期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于聚类和流量传播图的P2P流量识别方法 预览
1
作者 苏阳阳 孙冬璞 +1 位作者 李丹丹 孙广路 《计算机应用研究》 CSCD 北大核心 2019年第11期3448-3451,3455共5页
为有效监管网络,快速精确识别P2P流量,通过分析P2P网络流量中节点与节点、节点与链路之间的交互和行为特征,将聚类方法与流量传播图方法相结合,提出了一种基于网络行为特征的P2P流量识别方法。该方法首先通过采集网络流的包级和流级统... 为有效监管网络,快速精确识别P2P流量,通过分析P2P网络流量中节点与节点、节点与链路之间的交互和行为特征,将聚类方法与流量传播图方法相结合,提出了一种基于网络行为特征的P2P流量识别方法。该方法首先通过采集网络流的包级和流级统计特征对不同种类的网络应用的流量进行聚类,然后利用流量传播图对P2P流量进行识别。实验结果表明,提出的方法在骨干网络数据上能够有效识别P2P网络应用流量,F 1-measure达到95%以上。 展开更多
关键词 P2P流量识别 流量行为特征 流量传播图 基于密度带噪声的空间聚类算法
在线阅读 下载PDF
特征选择方法中三种度量的比较研究 预览 被引量:2
2
作者 宋智超 康健 +1 位作者 孙广路 何勇军 《哈尔滨理工大学学报》 北大核心 2018年第1期111-116,共6页
不同类型数据中特征与类别以及特征与特征之间存在一定的线性和非线性相关性。针对基于不同度量的特征选择方法在不同类型数据集上选取的特征存在明显差别的问题,本文选择线性相关系数、对称不确定性和互信息三种常用的线性或非线性度量... 不同类型数据中特征与类别以及特征与特征之间存在一定的线性和非线性相关性。针对基于不同度量的特征选择方法在不同类型数据集上选取的特征存在明显差别的问题,本文选择线性相关系数、对称不确定性和互信息三种常用的线性或非线性度量,将它们应用于基于相关性的快速特征选择方法中,对它们在基因微阵列和图像数据上的特征选择效果进行实验验证和比较。实验结果表明,基于相关性的快速特征选择方法使用线性相关系数在基因数据集上选取的特征集往往具有较好分类准确率,使用互信息在图像数据集上选取的特征集的分类效果较好,使用对称不确定性在两种类型数据上选取特征的分类效果较为稳定。 展开更多
关键词 特征选择 线性相关系数 对称不确定性 互信息 基于相关性的快速特征选择方法
在线阅读 下载PDF
基于最大信息系数和近似马尔科夫毯的特征选择方法 预览 被引量:10
3
作者 孙广路 宋智超 +2 位作者 刘金来 朱素霞 何勇军 《自动化学报》 CSCD 北大核心 2017年第5期795-805,共11页
最大信息系数(Maximum information coefficient,MIC)可以对变量间的线性和非线性关系,以及非函数依赖关系进行有效度量.本文首先根据最大信息系数理论,提出了一种评价各维特征间以及每维特征与类别间相关性的度量标准,然后提出... 最大信息系数(Maximum information coefficient,MIC)可以对变量间的线性和非线性关系,以及非函数依赖关系进行有效度量.本文首先根据最大信息系数理论,提出了一种评价各维特征间以及每维特征与类别间相关性的度量标准,然后提出了基于新度量标准的近似马尔科夫毯特征选择方法,删除冗余特征.在此基础上提出了基于特征排序和近似马尔科夫毯的两阶段特征选择方法,分别对特征的相关性和冗余性进行分析,选择有效的特征子集.在UCI和ASU上的多个公开数据集上的对比实验表明,本文提出的方法总体优于快速相关滤波(Fast correlation—based filter,FCBF)方法,与ReliefF,FAST,Lasso和RFS方法相比也具有优势. 展开更多
关键词 特征选择 最大信息系数 近似马尔科夫毯 特征相关性 特征冗余性
在线阅读 下载PDF
基于子空间聚类的网络流量分类方法 预览 被引量:3
4
作者 李丹丹 田春伟 +2 位作者 李佰洋 孙广路 康健 《哈尔滨理工大学学报》 CAS 北大核心 2015年第2期63-68,共6页
应用层网络流量分类技术对流量控制与管理等研究具有重要意义.针对传统的基于有监督机器学习的分类方法对所有应用程序使用相同的特征,使得某些特征对一种或几种应用类型有区分性,而对其他应用类型的网络流分类产生干扰等问题,提出基于... 应用层网络流量分类技术对流量控制与管理等研究具有重要意义.针对传统的基于有监督机器学习的分类方法对所有应用程序使用相同的特征,使得某些特征对一种或几种应用类型有区分性,而对其他应用类型的网络流分类产生干扰等问题,提出基于子空间聚类方法的网络流分类框架.利用子空间聚类算法,在总特征集中为每一种类型应用进行特征选择,提取与之相对应的关键特征,自动消除不相关的特征,使得每种应用类型都产生对应的特征签名集,并用这些不同的特征签名对未知的网络流进行分类.实验结果表明:本文提出的方法能够有效地提出每种应用类型的特征签名,并且所提出的特征签名具有明显的可区分性,该方法的分类准确率在93%以上,并且能很好的识别新出现的应用. 展开更多
关键词 子空间聚类 网络流分类 特征签名
在线阅读 下载PDF
基于朴素贝叶斯模型的邮件过滤技术 预览 被引量:5
5
作者 杨赫 孙广路 何勇军 《哈尔滨理工大学学报》 CAS 2014年第1期49-53,共5页
针对朴素贝叶斯算法应用于反垃圾邮件过滤时,其有效性十分依赖于对邮件内容的有效建模,而邮件内容建模方面研究尚不成熟限制了贝叶斯方法在垃圾邮件过滤中的性能.采用了三种概率分布对邮件内容进行建模,据此提出了3种概率分布下的朴素... 针对朴素贝叶斯算法应用于反垃圾邮件过滤时,其有效性十分依赖于对邮件内容的有效建模,而邮件内容建模方面研究尚不成熟限制了贝叶斯方法在垃圾邮件过滤中的性能.采用了三种概率分布对邮件内容进行建模,据此提出了3种概率分布下的朴素贝叶斯算法.为了提高训练效率,算法采用了一种增量式的垃圾邮件过滤方法.在trec05p-1、trec06p两个公开数据集上对这3种贝叶斯算法进行了实验对比,分析出三种贝叶斯分布的适用范围.从不同分布的邮件内容建模角度出发,为过滤垃圾邮件的方法选择提供了有效依据. 展开更多
关键词 邮件过滤 朴素贝叶斯 机器学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部 意见反馈