In this paper, research has been conducted to increase the quantity of fiber produced in the enterprise by creating a sorting device for spun seeds, dividing them into fractions by geometric dimensions, and by re-ginn...In this paper, research has been conducted to increase the quantity of fiber produced in the enterprise by creating a sorting device for spun seeds, dividing them into fractions by geometric dimensions, and by re-ginning, separating those with long fibers. A new model was developed for geometric sorting of cotton seeds in the harvest, and experiments determined its effectiveness and the optimal values of the factors affecting the efficiency using mathematical modeling. Based on the results of the study, graphs of the influence of factors on device performance and on device efficiency were constructed.展开更多
The paper presents a simplified 3D-model for active vibration control of rotating machines with active machine foot mounts on soft foundations, considering static and moment unbalance. After the model is mathematical ...The paper presents a simplified 3D-model for active vibration control of rotating machines with active machine foot mounts on soft foundations, considering static and moment unbalance. After the model is mathematical described in the time domain, it is transferred into the Fourier domain, where the frequencies response functions regarding bearing housing vibrations, foundation vibrations and actuator forces are derived. Afterwards, the mathematical coherences are described in the Laplace domain and a worst case procedure is presented to analyze the vibration stability. For special controller structures in combination with certain feedback strategies, a calculation method is shown, where the controller parameters can be directly implemented into the stiffness matrix, damping matrix and mass matrix. Additionally a numerical example is presented, where the vibration stability and the frequency response functions are analyzed.展开更多
For systematical NVH development of vehicle (especially for mass-production passenger vehicles) electric powertrain, an optimized V-Model is designed and has been implemented in the entire component-vehicle developmen...For systematical NVH development of vehicle (especially for mass-production passenger vehicles) electric powertrain, an optimized V-Model is designed and has been implemented in the entire component-vehicle development, which integrates three individual branches: simulation, validation and optimization. Compared to the V-models in the traditional sense, this optimized V-model is not only driven by requirement and task accomplishment but also maximum optimization of NVH system performance. In this case, developing procedures are capable to be efficiently iterated and the NVH engineering can be expanded into 3D with this V-model.展开更多
Train-induced vibration exhibits a potential dynamic impact on historic buildings and especially on those with high historical and cultural value.Under the long-term reciprocating load of train vibrations,structural f...Train-induced vibration exhibits a potential dynamic impact on historic buildings and especially on those with high historical and cultural value.Under the long-term reciprocating load of train vibrations,structural fatigue damage can occur,and thus,a significant problem involves effectively evaluating and mitigating vibration impact on historic buildings while developing a rail transit system.In the present study,train-induced vibration impact and dynamic behavior of Probhutaratna pagoda in the suburb of Beijing,which has a history of approximately 1000 years,was investigated.To examine the dynamic behavior of the Probhutaratna pagoda and determine the weakest position in its architectural damage under train loads,its dynamic characteristics were measured.The free vibration modes were identified based on the dynamic measurement results.Subsequently,a finite element(FE)model of the Probhutaratna pagoda was constructed and the models and train-induced structural responses were compared with measured results.Finally,the structural dynamic responses to moving train loads were analyzed in detail.The results indicate the following conclusions.(1)The dominant frequency of the ambient vibration is below 4 Hz,and the dominant frequency of the train-induced vibration is between 8 and 16 Hz.(2)The first,second,and third order natural frequencies are 1,3.25,and 6 Hz,respectively,in the west-east direction,and are 1,3.25,and 6.25 Hz,respectively,in the north-south direction.(3)The two weakest locations(A and B)of the Probhutaratna pagoda are observed at the spire bottom and west gate of the first floor.At location A,the maximum principal stress reached 243.6 N/m^2 and the corresponding maximum tensile strain reached 3.74×10^-7.展开更多
This paper aims at investigating the effectiveness of squeeze oil film in suppressing the longitudinal vibration of propulsion shaft systems through a novel integral axial squeeze film damper(IASFD).After designing th...This paper aims at investigating the effectiveness of squeeze oil film in suppressing the longitudinal vibration of propulsion shaft systems through a novel integral axial squeeze film damper(IASFD).After designing the IASFD,a propulsion shafting test rig for the longitudinal vibration control is built.Longitudinal vibration control experiments of the propulsion shafting are carried out under different magnitude and frequency of the excitation force.The results show that both IASFD elastic support and IASFD elastic damping support have excellent vibration attenuation characteristics,and can effectively suppress the longitudinal vibration of the shaft system in a wide frequency range.However,IASFD elastic damping support has a more significant vibration reduction effect than the other supports,and increasing the damping of the system has obvious effect on reducing the shafting vibration.For an excitation force of 45 N,the maximum reduction of the vibration amplitude is 89.16%.Also,the vibration generated by the resonance phenomenon is also significantly reduced.展开更多
Deep gas wells and gas fields have the characteristics of high pressure. The vibration of the tubing string during the production of gas wells causes the string to be subjected to severe stress and even dynamic fatigu...Deep gas wells and gas fields have the characteristics of high pressure. The vibration of the tubing string during the production of gas wells causes the string to be subjected to severe stress and even dynamic fatigue failure. Therefore, this article is based on the dynamic finite element theory, aiming at the characteristics of large-size tubing strings in deep gas wells. The finite element mechanics model and mathematical model of the tubing string vibration of the packer of high-pressure gas wells were established, and the ANSYS software was re-developed. The finite element analysis program for the vibration dynamics of the unbuckled and buckled strings of gas wells was compiled with APDL, and the displacement of the longitudinal vibration of the tubing string of high-pressure gas wells was studied. According to different sizes of tubing strings currently used in deep gas wells and gas fields, simulation calculations are carried out, and the axial impact load and buckling damage laws of the tubing strings of the entire well section under different production rates are obtained. It provides a theoretical basis for the prediction of tubing string vibration law and measures to prevent tubing string vibration.展开更多
The stiffness model of the finite element is applied to the Kirchhoff-love closed-form plate buckling;buckling is always in focus in plate assemblages. The useful Eigen-value solutions are unable to separate a square ...The stiffness model of the finite element is applied to the Kirchhoff-love closed-form plate buckling;buckling is always in focus in plate assemblages. The useful Eigen-value solutions are unable to separate a square plate from a much weaker long one in the most commonly-used all-simply supported plate (SSSS), among others. Spring-values of the Kirchhoff-Love plate are sought;once found, displacement-factors can be determined. Comparative </span><span style="font-family:Verdana;">displacements allow </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">an </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">easier and better evaluation of buckling-factors,</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> pure-shear, vibration and so are termed “buckling-displacement-factors”. In testing, many plates in mixed boundary conditions are evaluated for displacement</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">assisted buckling-solutions, first. The displacement-factors made from fundamental Eigen-vectors, in a single-pass, are found to be within about one-percent of known elastic values. It is found that the Kirchhoff-Love plate</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">spring and the finite-element spring, demonstrated, here, in the assemblage of beam-elements, are equivalent from the results. In either case</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"> stiffness is first assembled, ready for any loading—transverse, buckling, shear, vibration. The simply-supported plate draws the only exact vibration solution, and so, in an additional new effort, all other results are calibrated from it;direct vibration solutions are made for comparison but such results are, hardly, better. In the process, interactive Kirchhoff-Love plate-field-sheets are presented, for design. It is now additionally demanded that the solution Eigen-vector be </span><span style="font-family:Verdana;">developable into a recognizable deflection-factor. A weaker plate cannot possess greater buckling strength, this is a check;to find stiffness the</span><span style="font-family:Verdana;"> deflection-factor must be exact or nearly so. Several examples justify the characteristic buckling displacement-factor as a new tool</span></span></span></span><span style="font-family:Verdana;">.展开更多
<strong>Objectives: </strong>To investigate influence of metabolic syndrome on vibration perception threshold in first-degree relatives of type 2 diabetes who were not diagnosed with diabets before. <st...<strong>Objectives: </strong>To investigate influence of metabolic syndrome on vibration perception threshold in first-degree relatives of type 2 diabetes who were not diagnosed with diabets before. <strong>Material and Methods:</strong> First-degree relatives of type 2 diabetes at the age of 40 - 60 s who had not been diagnosed with diabetes before were enrolled. Height, weight, waist circumference, hip circumference, blood pressure (systolic and diastolic blood pressure), body fat percentage, fasting plasma lipid, fasting plasma glucose, 2-hour blood glucose after 75 g oral glucose and vibration perception threshold were measured. <strong>Results:</strong> 58 subjects were diagnosed with the level of vibration perception threshold ≥ 16 V. Vibration perception threshold in the metabolic syndrome group was significantly higher than that in the non-metabolic syndrome group (<em>P</em> < 0.05). Vibration perception threshold increased with the increase of metabolic syndrome component. The group with ≥3 components of metabolic syndrome had a significantly higher level of vibration perception, as compared with that of group with 0 component, group with 1 component of metabolic syndrome (<em>p</em> < 0.01). Group with 2 components of metabolic syndrome had a significantly higher level of vibration perception threshold when comparing with group with 0 component (<em>P</em> < 0.05). Vibration perception threshold was positively correlated with weight, body mass index, waist circumference, systolic blood pressure, diastolic blood pressure, fasting plasma glucose and 2-hour blood glucose. Stepwise multiple regression analysis showed that there was a positive correlation between waist circumference, systolic blood pressure and vibration perception threshold. <strong>Conclusion:</strong> Some first-degree relatives of type 2 diabetes who have not been diagnosed with diabetes have high risk of peripheral neuropathy, especially those with metabolic syndrome. Waist circumference and blood pressure are the main factors affecting Vibration perception threshold levels. Early detection of vibration perception threshold should be performed in first-degree relatives of type 2 diabetes with metabolic syndrome. Waist circumference and blood pressure may be important risk factors of peripheral neuropathy for them.展开更多
To refine the microstructure and improve the mechanical properties of AZ91 D alloy by expendable pattern shell casting(EPSC),the mechanical vibration method was applied in the solidification process of the alloy.The e...To refine the microstructure and improve the mechanical properties of AZ91 D alloy by expendable pattern shell casting(EPSC),the mechanical vibration method was applied in the solidification process of the alloy.The effects of amplitude and pouring temperature on microstructure and mechanical properties of AZ91 D magnesium alloy were studied.The results indicated that the mechanical vibration remarkably improved the sizes,morphologies and distributions of the primaryα-Mg phase andβ-Mg17 Al12 phase,and the densification and tensile properties of the AZ91 D alloy.With an increase in amplitude,the microstructures were gradually refined,resulting in a continuous increase in mechanical properties of the AZ91 D alloy.While,with the increase of pouring temperature,the microstructures were continuously coarsened,leading to an obvious decrease of the mechanical properties.The tensile strength and yield strength of the AZ91 D alloy with a vibration amplitude of 1.0 mm and a pouring temperature of 730℃were 60%and 38%higher than those of the alloy without vibration,respectively.展开更多
This paper focuses on a new finite-time convergence disturbance rejection control scheme design for a flexible Timoshenko manipulator subject to extraneous disturbances.To suppress the shear deformation and elastic os...This paper focuses on a new finite-time convergence disturbance rejection control scheme design for a flexible Timoshenko manipulator subject to extraneous disturbances.To suppress the shear deformation and elastic oscillation,position the manipulator in a desired angle,and ensure the finitetime convergence of disturbances,we develop three disturbance observers(DOs)and boundary controllers.Under the derived DOs-based control schemes,the controlled system is guaranteed to be uniformly bounded stable and disturbance estimation errors converge to zero in a finite time.In the end,numerical simulations are established by finite difference methods to demonstrate the effectiveness of the devised scheme by selecting appropriate parameters.展开更多
文摘In this paper, research has been conducted to increase the quantity of fiber produced in the enterprise by creating a sorting device for spun seeds, dividing them into fractions by geometric dimensions, and by re-ginning, separating those with long fibers. A new model was developed for geometric sorting of cotton seeds in the harvest, and experiments determined its effectiveness and the optimal values of the factors affecting the efficiency using mathematical modeling. Based on the results of the study, graphs of the influence of factors on device performance and on device efficiency were constructed.
文摘The paper presents a simplified 3D-model for active vibration control of rotating machines with active machine foot mounts on soft foundations, considering static and moment unbalance. After the model is mathematical described in the time domain, it is transferred into the Fourier domain, where the frequencies response functions regarding bearing housing vibrations, foundation vibrations and actuator forces are derived. Afterwards, the mathematical coherences are described in the Laplace domain and a worst case procedure is presented to analyze the vibration stability. For special controller structures in combination with certain feedback strategies, a calculation method is shown, where the controller parameters can be directly implemented into the stiffness matrix, damping matrix and mass matrix. Additionally a numerical example is presented, where the vibration stability and the frequency response functions are analyzed.
文摘For systematical NVH development of vehicle (especially for mass-production passenger vehicles) electric powertrain, an optimized V-Model is designed and has been implemented in the entire component-vehicle development, which integrates three individual branches: simulation, validation and optimization. Compared to the V-models in the traditional sense, this optimized V-model is not only driven by requirement and task accomplishment but also maximum optimization of NVH system performance. In this case, developing procedures are capable to be efficiently iterated and the NVH engineering can be expanded into 3D with this V-model.
基金National Science Foundation of China under Grant No.51708450。
文摘Train-induced vibration exhibits a potential dynamic impact on historic buildings and especially on those with high historical and cultural value.Under the long-term reciprocating load of train vibrations,structural fatigue damage can occur,and thus,a significant problem involves effectively evaluating and mitigating vibration impact on historic buildings while developing a rail transit system.In the present study,train-induced vibration impact and dynamic behavior of Probhutaratna pagoda in the suburb of Beijing,which has a history of approximately 1000 years,was investigated.To examine the dynamic behavior of the Probhutaratna pagoda and determine the weakest position in its architectural damage under train loads,its dynamic characteristics were measured.The free vibration modes were identified based on the dynamic measurement results.Subsequently,a finite element(FE)model of the Probhutaratna pagoda was constructed and the models and train-induced structural responses were compared with measured results.Finally,the structural dynamic responses to moving train loads were analyzed in detail.The results indicate the following conclusions.(1)The dominant frequency of the ambient vibration is below 4 Hz,and the dominant frequency of the train-induced vibration is between 8 and 16 Hz.(2)The first,second,and third order natural frequencies are 1,3.25,and 6 Hz,respectively,in the west-east direction,and are 1,3.25,and 6.25 Hz,respectively,in the north-south direction.(3)The two weakest locations(A and B)of the Probhutaratna pagoda are observed at the spire bottom and west gate of the first floor.At location A,the maximum principal stress reached 243.6 N/m^2 and the corresponding maximum tensile strain reached 3.74×10^-7.
基金Supported by the National Science and Technology Major Project(No.2017-Ⅳ-0010-0047)Key Laboratory Fund for Ship Vibration and Noise(No.614220406020717)+1 种基金China Postdoctoral Science Foundation Funded Project(No.2020M670113)the Fundamental Research Funds for the Central Universities(No.JD2003)。
文摘This paper aims at investigating the effectiveness of squeeze oil film in suppressing the longitudinal vibration of propulsion shaft systems through a novel integral axial squeeze film damper(IASFD).After designing the IASFD,a propulsion shafting test rig for the longitudinal vibration control is built.Longitudinal vibration control experiments of the propulsion shafting are carried out under different magnitude and frequency of the excitation force.The results show that both IASFD elastic support and IASFD elastic damping support have excellent vibration attenuation characteristics,and can effectively suppress the longitudinal vibration of the shaft system in a wide frequency range.However,IASFD elastic damping support has a more significant vibration reduction effect than the other supports,and increasing the damping of the system has obvious effect on reducing the shafting vibration.For an excitation force of 45 N,the maximum reduction of the vibration amplitude is 89.16%.Also,the vibration generated by the resonance phenomenon is also significantly reduced.
文摘Deep gas wells and gas fields have the characteristics of high pressure. The vibration of the tubing string during the production of gas wells causes the string to be subjected to severe stress and even dynamic fatigue failure. Therefore, this article is based on the dynamic finite element theory, aiming at the characteristics of large-size tubing strings in deep gas wells. The finite element mechanics model and mathematical model of the tubing string vibration of the packer of high-pressure gas wells were established, and the ANSYS software was re-developed. The finite element analysis program for the vibration dynamics of the unbuckled and buckled strings of gas wells was compiled with APDL, and the displacement of the longitudinal vibration of the tubing string of high-pressure gas wells was studied. According to different sizes of tubing strings currently used in deep gas wells and gas fields, simulation calculations are carried out, and the axial impact load and buckling damage laws of the tubing strings of the entire well section under different production rates are obtained. It provides a theoretical basis for the prediction of tubing string vibration law and measures to prevent tubing string vibration.
文摘The stiffness model of the finite element is applied to the Kirchhoff-love closed-form plate buckling;buckling is always in focus in plate assemblages. The useful Eigen-value solutions are unable to separate a square plate from a much weaker long one in the most commonly-used all-simply supported plate (SSSS), among others. Spring-values of the Kirchhoff-Love plate are sought;once found, displacement-factors can be determined. Comparative </span><span style="font-family:Verdana;">displacements allow </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">an </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">easier and better evaluation of buckling-factors,</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> pure-shear, vibration and so are termed “buckling-displacement-factors”. In testing, many plates in mixed boundary conditions are evaluated for displacement</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">assisted buckling-solutions, first. The displacement-factors made from fundamental Eigen-vectors, in a single-pass, are found to be within about one-percent of known elastic values. It is found that the Kirchhoff-Love plate</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">spring and the finite-element spring, demonstrated, here, in the assemblage of beam-elements, are equivalent from the results. In either case</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"> stiffness is first assembled, ready for any loading—transverse, buckling, shear, vibration. The simply-supported plate draws the only exact vibration solution, and so, in an additional new effort, all other results are calibrated from it;direct vibration solutions are made for comparison but such results are, hardly, better. In the process, interactive Kirchhoff-Love plate-field-sheets are presented, for design. It is now additionally demanded that the solution Eigen-vector be </span><span style="font-family:Verdana;">developable into a recognizable deflection-factor. A weaker plate cannot possess greater buckling strength, this is a check;to find stiffness the</span><span style="font-family:Verdana;"> deflection-factor must be exact or nearly so. Several examples justify the characteristic buckling displacement-factor as a new tool</span></span></span></span><span style="font-family:Verdana;">.
文摘<strong>Objectives: </strong>To investigate influence of metabolic syndrome on vibration perception threshold in first-degree relatives of type 2 diabetes who were not diagnosed with diabets before. <strong>Material and Methods:</strong> First-degree relatives of type 2 diabetes at the age of 40 - 60 s who had not been diagnosed with diabetes before were enrolled. Height, weight, waist circumference, hip circumference, blood pressure (systolic and diastolic blood pressure), body fat percentage, fasting plasma lipid, fasting plasma glucose, 2-hour blood glucose after 75 g oral glucose and vibration perception threshold were measured. <strong>Results:</strong> 58 subjects were diagnosed with the level of vibration perception threshold ≥ 16 V. Vibration perception threshold in the metabolic syndrome group was significantly higher than that in the non-metabolic syndrome group (<em>P</em> < 0.05). Vibration perception threshold increased with the increase of metabolic syndrome component. The group with ≥3 components of metabolic syndrome had a significantly higher level of vibration perception, as compared with that of group with 0 component, group with 1 component of metabolic syndrome (<em>p</em> < 0.01). Group with 2 components of metabolic syndrome had a significantly higher level of vibration perception threshold when comparing with group with 0 component (<em>P</em> < 0.05). Vibration perception threshold was positively correlated with weight, body mass index, waist circumference, systolic blood pressure, diastolic blood pressure, fasting plasma glucose and 2-hour blood glucose. Stepwise multiple regression analysis showed that there was a positive correlation between waist circumference, systolic blood pressure and vibration perception threshold. <strong>Conclusion:</strong> Some first-degree relatives of type 2 diabetes who have not been diagnosed with diabetes have high risk of peripheral neuropathy, especially those with metabolic syndrome. Waist circumference and blood pressure are the main factors affecting Vibration perception threshold levels. Early detection of vibration perception threshold should be performed in first-degree relatives of type 2 diabetes with metabolic syndrome. Waist circumference and blood pressure may be important risk factors of peripheral neuropathy for them.
基金the financial support from the State Key Laboratory of Materials Processing and Die&Mould Technology,Huazhong University of Science and Technology(P2020-05)。
文摘To refine the microstructure and improve the mechanical properties of AZ91 D alloy by expendable pattern shell casting(EPSC),the mechanical vibration method was applied in the solidification process of the alloy.The effects of amplitude and pouring temperature on microstructure and mechanical properties of AZ91 D magnesium alloy were studied.The results indicated that the mechanical vibration remarkably improved the sizes,morphologies and distributions of the primaryα-Mg phase andβ-Mg17 Al12 phase,and the densification and tensile properties of the AZ91 D alloy.With an increase in amplitude,the microstructures were gradually refined,resulting in a continuous increase in mechanical properties of the AZ91 D alloy.While,with the increase of pouring temperature,the microstructures were continuously coarsened,leading to an obvious decrease of the mechanical properties.The tensile strength and yield strength of the AZ91 D alloy with a vibration amplitude of 1.0 mm and a pouring temperature of 730℃were 60%and 38%higher than those of the alloy without vibration,respectively.
基金supported in part by National Natural Science Foundation of China(61803109)in part by the Innovative School Project of Education Department of Guangdong(2017KQNCX153)+3 种基金in part by the Science and Technology Planning Project of Guangzhou City(201904010494)in part by the Scientific Research Projects of Guangzhou Education Bureau(202032793)in part by the China Postdoctoral Science Foundation(2019M660463)in part by the Interdisciplinary Research Project for Young Teachers of University of Science and Technology Beijing(FRFIDRY-19-024)。
文摘This paper focuses on a new finite-time convergence disturbance rejection control scheme design for a flexible Timoshenko manipulator subject to extraneous disturbances.To suppress the shear deformation and elastic oscillation,position the manipulator in a desired angle,and ensure the finitetime convergence of disturbances,we develop three disturbance observers(DOs)and boundary controllers.Under the derived DOs-based control schemes,the controlled system is guaranteed to be uniformly bounded stable and disturbance estimation errors converge to zero in a finite time.In the end,numerical simulations are established by finite difference methods to demonstrate the effectiveness of the devised scheme by selecting appropriate parameters.