The flow field and heat transfer of the strip surface due to the twin slot vertical jet impingement were investigated using the ANSYS FLUENT.The RNG k-ε model was carried out in the turbulent calculation.Systematic p...The flow field and heat transfer of the strip surface due to the twin slot vertical jet impingement were investigated using the ANSYS FLUENT.The RNG k-ε model was carried out in the turbulent calculation.Systematic parametric research was conducted by varying the jet velocity of nozzle exit(V=5 m/s,7.5 m/s,10 m/s),the temperature of cooling water(T_w=280 K,300 K),the normalized spacing from the nozzle to the strip surface(H=10,15,20,33),and the normalized spacing from the nozzle to nozzle centerline(W=0,15,30).The velocity streamline of the flow domain and the general trend of the distribution of the local Nusselt number on the impingement surface of strip were obtained.The result indicate that,the average Nusselt number increases by about70%(90%) as the jet velocity is increased from 5 m/s to 7.5 m/s(from 7.5 m/s to 10 m/s),and T_w,Hand//have minimal effect on it.While the valley Nusselt number decreases by about 10%-43%with the increase of H and W.The functional relationship between the average Nusselt number and the systematic parameters is derived by the least square regression method.展开更多
Characteristics of heat transfer and flow resistance of the latticework (vortex) cooling channel with ribs truncated at their two ends were theoretically and experimentally studied compared with regular and smooth c...Characteristics of heat transfer and flow resistance of the latticework (vortex) cooling channel with ribs truncated at their two ends were theoretically and experimentally studied compared with regular and smooth channels of the same configuration. The results showed: the heat transfer efficiency of the latticework channel with two slots was better than those of regular and smooth channels of the same configuration, its flow resistance situation in the slotted channel becomes quite complex; The flow resistances of 2 mm- and 4 mm-slotted channels were obviously lower than that of the regular channel, but they are still much higher than that of the smooth channel; Compared with the regular channel, the total heat transfer efficiencies of the slotted channels were pretty improved, among them the 4-mm slotted channel has the biggest enhancement. From the experimental results, it is obvious that the latticework channel with proper slots has a great prospect in the design of the inner cooling channels of turbine blades.展开更多
The accurate simulation of boundary layer transition process plays a very important role in the prediction of turbine blade temperature field. Based on the Abu-Ghannam and Shaw (AGS) and c-Re h transition models, a 3D...The accurate simulation of boundary layer transition process plays a very important role in the prediction of turbine blade temperature field. Based on the Abu-Ghannam and Shaw (AGS) and c-Re h transition models, a 3D conjugate heat transfer solver is developed, where the fluid domain is discretized by multi-block structured grids, and the solid domain is discretized by unstructured grids. At the unmatched fluid/solid interface, the shape function interpolation method is adopted to ensure the conservation of the interfacial heat flux. Then the shear stress transport (SST) model, SST & AGS model and SST & c-Re h model are used to investigate the flow and heat transfer characteristics of Mark II turbine vane. The results indicate that compared with the full turbulence model (SST model), the transition models could improve the prediction accuracy of temperature and heat transfer coefficient at the laminar zone near the blade leading edge. Compared with the AGS transition model, the c-Re h model could predict the transition onset location induced by shock/boundary layer interaction more accurately, and the prediction accuracy of temperature field could be greatly improved.展开更多
基金Project(2012 BAF04B01)Supported by the National Science and Technology Pillar Program during the Twelfth Five-year Plan of China
文摘The flow field and heat transfer of the strip surface due to the twin slot vertical jet impingement were investigated using the ANSYS FLUENT.The RNG k-ε model was carried out in the turbulent calculation.Systematic parametric research was conducted by varying the jet velocity of nozzle exit(V=5 m/s,7.5 m/s,10 m/s),the temperature of cooling water(T_w=280 K,300 K),the normalized spacing from the nozzle to the strip surface(H=10,15,20,33),and the normalized spacing from the nozzle to nozzle centerline(W=0,15,30).The velocity streamline of the flow domain and the general trend of the distribution of the local Nusselt number on the impingement surface of strip were obtained.The result indicate that,the average Nusselt number increases by about70%(90%) as the jet velocity is increased from 5 m/s to 7.5 m/s(from 7.5 m/s to 10 m/s),and T_w,Hand//have minimal effect on it.While the valley Nusselt number decreases by about 10%-43%with the increase of H and W.The functional relationship between the average Nusselt number and the systematic parameters is derived by the least square regression method.
基金Financial support of the National Natural Science Foundation of China (No.200604096)
文摘Characteristics of heat transfer and flow resistance of the latticework (vortex) cooling channel with ribs truncated at their two ends were theoretically and experimentally studied compared with regular and smooth channels of the same configuration. The results showed: the heat transfer efficiency of the latticework channel with two slots was better than those of regular and smooth channels of the same configuration, its flow resistance situation in the slotted channel becomes quite complex; The flow resistances of 2 mm- and 4 mm-slotted channels were obviously lower than that of the regular channel, but they are still much higher than that of the smooth channel; Compared with the regular channel, the total heat transfer efficiencies of the slotted channels were pretty improved, among them the 4-mm slotted channel has the biggest enhancement. From the experimental results, it is obvious that the latticework channel with proper slots has a great prospect in the design of the inner cooling channels of turbine blades.
基金National Natural Science Foundation of China(Grant No.91130013) Innovation Foundation of BUAA for PhD Graduates(YWF-12-RBYJ-010) Specialized Research Fund for the Doctoral Program of Higher Education(20101102110011)for funding this work
文摘The accurate simulation of boundary layer transition process plays a very important role in the prediction of turbine blade temperature field. Based on the Abu-Ghannam and Shaw (AGS) and c-Re h transition models, a 3D conjugate heat transfer solver is developed, where the fluid domain is discretized by multi-block structured grids, and the solid domain is discretized by unstructured grids. At the unmatched fluid/solid interface, the shape function interpolation method is adopted to ensure the conservation of the interfacial heat flux. Then the shear stress transport (SST) model, SST & AGS model and SST & c-Re h model are used to investigate the flow and heat transfer characteristics of Mark II turbine vane. The results indicate that compared with the full turbulence model (SST model), the transition models could improve the prediction accuracy of temperature and heat transfer coefficient at the laminar zone near the blade leading edge. Compared with the AGS transition model, the c-Re h model could predict the transition onset location induced by shock/boundary layer interaction more accurately, and the prediction accuracy of temperature field could be greatly improved.