In recent years, the performances of radar resolution, coverage, and detection accuracy have been significantly improved through the use of ultra-wideband, synthetic aperture and digital signal processing technologies...In recent years, the performances of radar resolution, coverage, and detection accuracy have been significantly improved through the use of ultra-wideband, synthetic aperture and digital signal processing technologies. High-resolution radars (HRRs) utilize wideband signals and synthetic apertures to enhance the range and angular resolutions of tracking, respectively. They also generate one-, two-, and even threedimensional high-resolution images containing the feature information of targets, from which the targets can be precisely classified and identified. Advanced signal processing algorithms in HRRs obtain important information such as range-Doppler imaging, phase-derived ranging, and micro-motion features. However, the advantages and applications of HRRs are restricted by factors such as the reduced signal-to-noise ratio (SNR) of multi-scatter point targets, decreased tracking accuracy of multi-scatter point targets, high demands of motion compensation, and low sensitivity of the target attitude. Focusing on these problems, this paper systematically introduces the novel technologies of HRRs and discusses the issues and solutions relevant to detection, tracking, imaging, and recognition. Finally, it reviews the latest progress and representative results of HRR-based research, and suggests the future development of HRRs.展开更多
Free-space laser communication is characterized by high communication speed, strong anti-jamming ability, high confidentiality, and flexible configuration. In this paper, a pointing, acquisition, and tracking (PAT) sy...Free-space laser communication is characterized by high communication speed, strong anti-jamming ability, high confidentiality, and flexible configuration. In this paper, a pointing, acquisition, and tracking (PAT) system based on a two-stage (i.e., coarse and fine) composite tracking mechanism is proposed to solve the optical axis alignment problem, which is common in free-space laser communications. The acquisition probability of the PAT system is ensured by designing two tracking modules, a coarse tracking module which combines passive damping with active suppression and a fine tracking module based on an electromagnetic galvanometer. Both modules are combined by using a dynamic scanning mechanism based on the gyroscope signal. Finally, a free-space laser communication test with a long range and a high speed is conducted by two fixed-wing Y12 aircrafts equipped with the proposed PAT system. Experimental results show that the coarse tracking precision of the airborne PAT system is 10 μrad (1σ), and the fine tracking precision is 10μrad (1σ) during flights which are much improved as compared with the indoor tests. This indicates that the system can achieve a high precision for PAT during high-speed and long-range laser communications in the free-space. This also verifies the tracking capability and the environmental adaptability of the proposed laser communication PAT system.展开更多
This paper designs a novel controller to improve the path-tracking performance of articulated dump truck(ADT). By combining linear quadratic regulator(LQR) with genetic algorithm(GA), the designed controller is used t...This paper designs a novel controller to improve the path-tracking performance of articulated dump truck(ADT). By combining linear quadratic regulator(LQR) with genetic algorithm(GA), the designed controller is used to control linear and angular velocities on the midpoint of the front frame. The novel controller based on the error dynamics model is eventually realized to track the path high-precisely with constant speed. The results of simulation and experiment show that the LQR-GA controller has a better tracking performance than the existing methods under a low speed of 3 m/s. In this paper, kinematics model and simulation control models based on co-simulation of ADAMS and Matlab/Simulink are established to verify the proposed strategy. In addition, a real vehicle experiment is designed to further more correctness of the conclusion. With the proposed controller and considering the steering model in the simulation, the control performance is improved and matches the actual situation better. The research results contribute to the development of automation of ADT.展开更多
In this paper, an adaptive generalized predictive control(GPC) based on hierarchical control strategy is designed for a quadrotor with a robotic arm. For this nonlinear and coupled system, a two-layer control structur...In this paper, an adaptive generalized predictive control(GPC) based on hierarchical control strategy is designed for a quadrotor with a robotic arm. For this nonlinear and coupled system, a two-layer control structure is adopted to achieve more precise trajectory tracking and keep the tracking performance after aerial grasping.The inner-layer controller is a proportional-derivative(PD) controller. The outer-layer subsystem is linearized by input-output linearization first and an adaptive generalized predictive controller is applied. The effectiveness of this approach is verified through the simulation using MATLAB/Simulink. A PD controller with feedforward control input is applied on such a system for a comparative study. Simulation results show that a better tracking performance can be achieved by the proposed strategy.展开更多
Based on adaptive dynamic programming (ADP), the fixed-point tracking control problem is solved by a value iteration (VI) algorithm. First, a class of discrete-time (DT) nonlinear system with disturbance is considered...Based on adaptive dynamic programming (ADP), the fixed-point tracking control problem is solved by a value iteration (VI) algorithm. First, a class of discrete-time (DT) nonlinear system with disturbance is considered. Second, the convergence of a VI algorithm is given. It is proven that the iterative cost function precisely converges to the optimal value, and the control input and disturbance input also converges to the optimal values. Third, a novel analysis pertaining to the range of the discount factor is presented, where the cost function serves as a Lyapunov function. Finally, neural networks (NNs) are employed to approximate the cost function, the control law, and the disturbance law. Simulation examples are given to illustrate the effective performance of the proposed method.展开更多
Non-contact actuated microbeads have attracted a lot of attention in recent years because of its enormous potential in medical, biological, and industrial applications. Researchers have proposed a multitude of electro...Non-contact actuated microbeads have attracted a lot of attention in recent years because of its enormous potential in medical, biological, and industrial applications. Researchers have proposed a multitude of electromagnetic actuation(EMA) systems consisting of a variety of coil pairs. However, a unified method to design and optimize a coil pair according to technical specifications still does not exist. Initially, this paper presented the modeling of an untethered ferromagnetic particle actuated by externally applied magnetic field. Based on the models, a simple method of designing and optimizing the EMA coil pair according to technical specifications, was proposed. A loop-shaped coil pair generating uniform magnetic and gradient fields was chosen to demonstrate this method clearly and practically. The results of the optimization showed that the best distance to radius ratio of a loop-shaped coil pair is 1.02 for a uniform magnetic field and 1.75 for a uniform gradient field. The applicability of the method to other shapes of coil configuration was also illustrated. The best width to distance ratio for a square-shaped coil pair is 0.558 and 0.958 for uniform magnetic and gradient fields, respectively. The best height to width ratio and distance to width ratio for a rectangle-shaped coil pair is h/w =[0.9,1.1], d/w =[0.5,0.6] for uniform magnetic field and h/w =[1.0,1.2], d/w =[0.9,1.1] for uniform gradient field. Furthermore, simulations of a microparticle tracking the targeted trajectory were conducted to analyze the performance of the newly designed coils. The simulations suggested the ability of manipulating microparticles via the coils designed by our proposed method. The research mainly proposed a unified design and optimization method for a coil pair, which can support researchers while designing a specific coil pair according to the technical requirements. This study is aimed at researchers who are interested in EMA system and microrobots.展开更多
This paper presents augmented input estimation(AIE)for multiple maneuvering target tracking.Multi-target tracking(MTT)is based on two main parts,data association and estimation.In data association(DA),the best observa...This paper presents augmented input estimation(AIE)for multiple maneuvering target tracking.Multi-target tracking(MTT)is based on two main parts,data association and estimation.In data association(DA),the best observations are assigned to the considered tracks.In real conditions,the number of observations is more than targets and also locations of observations are often so scattered that the association between targets and observations cannot be done simply.In this case,for general MTT problems with unknown numbers of targets,we present a Markov chain Monte-Carlo DA(MCMCDA)algorithm that approximates the optimal Bayesian filter with low complexity in computations.After DA,estimation and tracking should be done.Since in general cases,many targets can have maneuvering motions,then AIE is proposed to cover both the non-maneuvering and maneuvering parts of motion and the maneuver detection procedure is eliminated.This model with an input estimation(IE)approach is a special augmentation in the state space model which considers both the state vector and the unknown input vector as a new augmented state vector.Some comparisons based on the Monte-Carlo simulations are also made to evaluate the performances of the proposed method and other older methods in MTT.展开更多
Visual tracking is a challenging problem in computer vision. Recently, correlation filter-based trackers have shown to provide excellent tracking performance. Inspired by a sample consensus approach proposed for foreg...Visual tracking is a challenging problem in computer vision. Recently, correlation filter-based trackers have shown to provide excellent tracking performance. Inspired by a sample consensus approach proposed for foreground detection, which classifies a given pixel as foreground or background based on its similarity to recently observed samples, we present a template consensus tracker based on the kernelized correlation filter (KCF). Instead of keeping only one target appearance model in the KCF, we make a feature pool to keep several target appearance models in our method and predict the new target position by searching for the location of the maximal value of the response maps. Both quantitative and qualitative evaluations are performed on the CVPR2013 tracking benchmark dataset. The results show that our proposed method improves the original KCF tracker by 8.17% in the success plot and 8.11% in the precision plot.展开更多
We propose an efficient and robust tracking method based on minimum barrier distance (MBD) and spatio-temporal context (STC) learning. It is robust to noise and blur, and can be evaluated approximately through a Dijks...We propose an efficient and robust tracking method based on minimum barrier distance (MBD) and spatio-temporal context (STC) learning. It is robust to noise and blur, and can be evaluated approximately through a Dijkstra-like algorithm, leading to fast computation. We adopt the MBD transform to measure the weights of context pixels, and formulate the spatio-temporal relationship between the object and its surrounding region based on a Bayesian framework to estimate the most likely location of the target. A bounded scale update model is proposed to estimate the size of the object. The whole proposed method runs at nearly 160 frames per second (FPS) on an i5 machine. Extensive experimental results show it has comparable or better comprehensive performance than the original STC and some other leading methods.展开更多
By improving the long-term correlation tracking(LCT) algorithm, an effective object tracking method, improved LCT(ILCT), is proposed to address the issue of occlusion. If the object is judged being occluded by the des...By improving the long-term correlation tracking(LCT) algorithm, an effective object tracking method, improved LCT(ILCT), is proposed to address the issue of occlusion. If the object is judged being occluded by the designed criterion, which is based on the characteristic of response value curve, an added re-detector will perform re-detection, and the tracker is ordered to stop. Besides, a filtering and adoption strategy of re-detection results is given to choose the most reliable one for the re-initialization of the tracker. Extensive experiments are carried out under the conditions of occlusion, and the results demonstrate that ILCT outperforms some state-of-the-art methods in terms of accuracy and robustness.展开更多
The 1-D piston problem for the pressure gradient equations arising from the flux-splitting of the compressible Euler equations is considered.When the total variations of the initial data and the velocity of the piston...The 1-D piston problem for the pressure gradient equations arising from the flux-splitting of the compressible Euler equations is considered.When the total variations of the initial data and the velocity of the piston are both sufficiently small,the author establishes the global existence of entropy solutions including a strong rarefaction wave without restriction on the strength by employing a modified wave front tracking method.展开更多
In this paper, we propose an adaptive fuzzy dynamic surface control(DSC) scheme for single-link flexible-joint robotic systems with input saturation. A smooth function is utilized with the mean-value theorem to deal w...In this paper, we propose an adaptive fuzzy dynamic surface control(DSC) scheme for single-link flexible-joint robotic systems with input saturation. A smooth function is utilized with the mean-value theorem to deal with the difficulties associated with input saturation. An adaptive DSC design with an auxiliary first-order filter is used to solve the 'explosion of complexity'problem. It is proved that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded, and the tracking error eventually converges to a small neighborhood around zero. The main advantage of the proposed method is that only one adaptation parameter needs to be updated,which reduces the computational burden significantly. Simulation results demonstrate the feasibility of the proposed scheme and the comparison results show that the improved DSC method can reduce the computational burden by almost two thirds in comparison with the standard DSC method.展开更多
To track the nonlinear,non-Gaussian bearings-only maneuvering target accurately online,the constrained auxiliary particle filtering(CAPF)algorithm is presented.To restrict the samples into the feasible area,the soft m...To track the nonlinear,non-Gaussian bearings-only maneuvering target accurately online,the constrained auxiliary particle filtering(CAPF)algorithm is presented.To restrict the samples into the feasible area,the soft measurement constraints are implemented into the update routine via the1 regularization.Meanwhile,to enhance the sampling diversity and efficiency,the target kinetic features and the latest observations are involved into the evolution.To take advantage of the past and the current measurement information simultaneously,the sub-optimal importance distribution is constructed as a Gaussian mixture consisting of the original and modified priors with the fuzzy weighted factors.As a result,the corresponding weights are more evenly distributed,and the posterior distribution of interest is approximated well with a heavier tailor.Simulation results demonstrate the validity and superiority of the CAPF algorithm in terms of efficiency and robustness.展开更多
基金National Natural Science Foundation of China (Grant No. 61771050)111 Project of the China Ministry of Education (MOE)(Grant No. B14010).
文摘In recent years, the performances of radar resolution, coverage, and detection accuracy have been significantly improved through the use of ultra-wideband, synthetic aperture and digital signal processing technologies. High-resolution radars (HRRs) utilize wideband signals and synthetic apertures to enhance the range and angular resolutions of tracking, respectively. They also generate one-, two-, and even threedimensional high-resolution images containing the feature information of targets, from which the targets can be precisely classified and identified. Advanced signal processing algorithms in HRRs obtain important information such as range-Doppler imaging, phase-derived ranging, and micro-motion features. However, the advantages and applications of HRRs are restricted by factors such as the reduced signal-to-noise ratio (SNR) of multi-scatter point targets, decreased tracking accuracy of multi-scatter point targets, high demands of motion compensation, and low sensitivity of the target attitude. Focusing on these problems, this paper systematically introduces the novel technologies of HRRs and discusses the issues and solutions relevant to detection, tracking, imaging, and recognition. Finally, it reviews the latest progress and representative results of HRR-based research, and suggests the future development of HRRs.
基金the National Natural Science Foundation of China (Grant No. 51505087).
文摘Free-space laser communication is characterized by high communication speed, strong anti-jamming ability, high confidentiality, and flexible configuration. In this paper, a pointing, acquisition, and tracking (PAT) system based on a two-stage (i.e., coarse and fine) composite tracking mechanism is proposed to solve the optical axis alignment problem, which is common in free-space laser communications. The acquisition probability of the PAT system is ensured by designing two tracking modules, a coarse tracking module which combines passive damping with active suppression and a fine tracking module based on an electromagnetic galvanometer. Both modules are combined by using a dynamic scanning mechanism based on the gyroscope signal. Finally, a free-space laser communication test with a long range and a high speed is conducted by two fixed-wing Y12 aircrafts equipped with the proposed PAT system. Experimental results show that the coarse tracking precision of the airborne PAT system is 10 μrad (1σ), and the fine tracking precision is 10μrad (1σ) during flights which are much improved as compared with the indoor tests. This indicates that the system can achieve a high precision for PAT during high-speed and long-range laser communications in the free-space. This also verifies the tracking capability and the environmental adaptability of the proposed laser communication PAT system.
基金the Fundamental Research Funds for the Central Universities of China(No.FRF-TP-15-023A1)the National Key R&D Program Project(Nos.2016YFC0802905 and 2018YFC0604403).
文摘This paper designs a novel controller to improve the path-tracking performance of articulated dump truck(ADT). By combining linear quadratic regulator(LQR) with genetic algorithm(GA), the designed controller is used to control linear and angular velocities on the midpoint of the front frame. The novel controller based on the error dynamics model is eventually realized to track the path high-precisely with constant speed. The results of simulation and experiment show that the LQR-GA controller has a better tracking performance than the existing methods under a low speed of 3 m/s. In this paper, kinematics model and simulation control models based on co-simulation of ADAMS and Matlab/Simulink are established to verify the proposed strategy. In addition, a real vehicle experiment is designed to further more correctness of the conclusion. With the proposed controller and considering the steering model in the simulation, the control performance is improved and matches the actual situation better. The research results contribute to the development of automation of ADT.
基金the National Natural Science Foundation of China(No.61773262)the China Aviation Science Foundation(No.20142057006).
文摘In this paper, an adaptive generalized predictive control(GPC) based on hierarchical control strategy is designed for a quadrotor with a robotic arm. For this nonlinear and coupled system, a two-layer control structure is adopted to achieve more precise trajectory tracking and keep the tracking performance after aerial grasping.The inner-layer controller is a proportional-derivative(PD) controller. The outer-layer subsystem is linearized by input-output linearization first and an adaptive generalized predictive controller is applied. The effectiveness of this approach is verified through the simulation using MATLAB/Simulink. A PD controller with feedforward control input is applied on such a system for a comparative study. Simulation results show that a better tracking performance can be achieved by the proposed strategy.
基金supported in part by the National Natural Science Foundation of China (61873300, 61722312)in part by the Fundamental Research Funds for the Central Universities (FRF-GF-17-B45).
文摘Based on adaptive dynamic programming (ADP), the fixed-point tracking control problem is solved by a value iteration (VI) algorithm. First, a class of discrete-time (DT) nonlinear system with disturbance is considered. Second, the convergence of a VI algorithm is given. It is proven that the iterative cost function precisely converges to the optimal value, and the control input and disturbance input also converges to the optimal values. Third, a novel analysis pertaining to the range of the discount factor is presented, where the cost function serves as a Lyapunov function. Finally, neural networks (NNs) are employed to approximate the cost function, the control law, and the disturbance law. Simulation examples are given to illustrate the effective performance of the proposed method.
基金Supported by Aerospace Research Project (Grant No. 040102).
文摘Non-contact actuated microbeads have attracted a lot of attention in recent years because of its enormous potential in medical, biological, and industrial applications. Researchers have proposed a multitude of electromagnetic actuation(EMA) systems consisting of a variety of coil pairs. However, a unified method to design and optimize a coil pair according to technical specifications still does not exist. Initially, this paper presented the modeling of an untethered ferromagnetic particle actuated by externally applied magnetic field. Based on the models, a simple method of designing and optimizing the EMA coil pair according to technical specifications, was proposed. A loop-shaped coil pair generating uniform magnetic and gradient fields was chosen to demonstrate this method clearly and practically. The results of the optimization showed that the best distance to radius ratio of a loop-shaped coil pair is 1.02 for a uniform magnetic field and 1.75 for a uniform gradient field. The applicability of the method to other shapes of coil configuration was also illustrated. The best width to distance ratio for a square-shaped coil pair is 0.558 and 0.958 for uniform magnetic and gradient fields, respectively. The best height to width ratio and distance to width ratio for a rectangle-shaped coil pair is h/w =[0.9,1.1], d/w =[0.5,0.6] for uniform magnetic field and h/w =[1.0,1.2], d/w =[0.9,1.1] for uniform gradient field. Furthermore, simulations of a microparticle tracking the targeted trajectory were conducted to analyze the performance of the newly designed coils. The simulations suggested the ability of manipulating microparticles via the coils designed by our proposed method. The research mainly proposed a unified design and optimization method for a coil pair, which can support researchers while designing a specific coil pair according to the technical requirements. This study is aimed at researchers who are interested in EMA system and microrobots.
文摘This paper presents augmented input estimation(AIE)for multiple maneuvering target tracking.Multi-target tracking(MTT)is based on two main parts,data association and estimation.In data association(DA),the best observations are assigned to the considered tracks.In real conditions,the number of observations is more than targets and also locations of observations are often so scattered that the association between targets and observations cannot be done simply.In this case,for general MTT problems with unknown numbers of targets,we present a Markov chain Monte-Carlo DA(MCMCDA)algorithm that approximates the optimal Bayesian filter with low complexity in computations.After DA,estimation and tracking should be done.Since in general cases,many targets can have maneuvering motions,then AIE is proposed to cover both the non-maneuvering and maneuvering parts of motion and the maneuver detection procedure is eliminated.This model with an input estimation(IE)approach is a special augmentation in the state space model which considers both the state vector and the unknown input vector as a new augmented state vector.Some comparisons based on the Monte-Carlo simulations are also made to evaluate the performances of the proposed method and other older methods in MTT.
基金the National Natural Science Foundation of China(No.61401425).
文摘Visual tracking is a challenging problem in computer vision. Recently, correlation filter-based trackers have shown to provide excellent tracking performance. Inspired by a sample consensus approach proposed for foreground detection, which classifies a given pixel as foreground or background based on its similarity to recently observed samples, we present a template consensus tracker based on the kernelized correlation filter (KCF). Instead of keeping only one target appearance model in the KCF, we make a feature pool to keep several target appearance models in our method and predict the new target position by searching for the location of the maximal value of the response maps. Both quantitative and qualitative evaluations are performed on the CVPR2013 tracking benchmark dataset. The results show that our proposed method improves the original KCF tracker by 8.17% in the success plot and 8.11% in the precision plot.
基金the National Natural Science Foundation of China(Nos.61771336,61671321 and 51475328).
文摘We propose an efficient and robust tracking method based on minimum barrier distance (MBD) and spatio-temporal context (STC) learning. It is robust to noise and blur, and can be evaluated approximately through a Dijkstra-like algorithm, leading to fast computation. We adopt the MBD transform to measure the weights of context pixels, and formulate the spatio-temporal relationship between the object and its surrounding region based on a Bayesian framework to estimate the most likely location of the target. A bounded scale update model is proposed to estimate the size of the object. The whole proposed method runs at nearly 160 frames per second (FPS) on an i5 machine. Extensive experimental results show it has comparable or better comprehensive performance than the original STC and some other leading methods.
基金the National Program on Key Basic Research Project(No.2014CB744903)Shanghai Pujiang Program(No.16PJD028)+2 种基金Shanghai Industrial Strengthening Project(No.GYQJ-2017-5-08)Shanghai Science and Technology Committee Research Project(No.17DZ1204304)Shanghai Engineering Research Center of Civil Aircraft Flight Testing.
文摘By improving the long-term correlation tracking(LCT) algorithm, an effective object tracking method, improved LCT(ILCT), is proposed to address the issue of occlusion. If the object is judged being occluded by the designed criterion, which is based on the characteristic of response value curve, an added re-detector will perform re-detection, and the tracker is ordered to stop. Besides, a filtering and adoption strategy of re-detection results is given to choose the most reliable one for the re-initialization of the tracker. Extensive experiments are carried out under the conditions of occlusion, and the results demonstrate that ILCT outperforms some state-of-the-art methods in terms of accuracy and robustness.
基金the National Natural Science Foundation of China(Nos.11626176,11701435)the Fundamental Research Funds for the Central Universities of China(Nos.2018IB015,2018IVB013).
文摘The 1-D piston problem for the pressure gradient equations arising from the flux-splitting of the compressible Euler equations is considered.When the total variations of the initial data and the velocity of the piston are both sufficiently small,the author establishes the global existence of entropy solutions including a strong rarefaction wave without restriction on the strength by employing a modified wave front tracking method.
基金the National Natural Science Foundation of China (61773051,61773072,61761166011)the Fundamental Research Fund for the Central Universities (2016RC021,2017JBZ003).
文摘In this paper, we propose an adaptive fuzzy dynamic surface control(DSC) scheme for single-link flexible-joint robotic systems with input saturation. A smooth function is utilized with the mean-value theorem to deal with the difficulties associated with input saturation. An adaptive DSC design with an auxiliary first-order filter is used to solve the 'explosion of complexity'problem. It is proved that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded, and the tracking error eventually converges to a small neighborhood around zero. The main advantage of the proposed method is that only one adaptation parameter needs to be updated,which reduces the computational burden significantly. Simulation results demonstrate the feasibility of the proposed scheme and the comparison results show that the improved DSC method can reduce the computational burden by almost two thirds in comparison with the standard DSC method.
基金the National Natural Science Foundation of China(61773267)the Shenzhen Fundamental Research Project(JCYJ2017030214551952420170818102503604).
文摘To track the nonlinear,non-Gaussian bearings-only maneuvering target accurately online,the constrained auxiliary particle filtering(CAPF)algorithm is presented.To restrict the samples into the feasible area,the soft measurement constraints are implemented into the update routine via the1 regularization.Meanwhile,to enhance the sampling diversity and efficiency,the target kinetic features and the latest observations are involved into the evolution.To take advantage of the past and the current measurement information simultaneously,the sub-optimal importance distribution is constructed as a Gaussian mixture consisting of the original and modified priors with the fuzzy weighted factors.As a result,the corresponding weights are more evenly distributed,and the posterior distribution of interest is approximated well with a heavier tailor.Simulation results demonstrate the validity and superiority of the CAPF algorithm in terms of efficiency and robustness.