In this work, the phase transformation sequence during the continuous heating process(3℃/min) was investigated in a near β titanium alloy. The results show that the staring formation of ω phase is about267℃, and t...In this work, the phase transformation sequence during the continuous heating process(3℃/min) was investigated in a near β titanium alloy. The results show that the staring formation of ω phase is about267℃, and the ending precipitation temperature about 386℃ during the heating process. When the heating temperature is greater than 485℃, there are no ω phase detected within the β matrix. Combined with the microstructural characterization, it is found that ω phase facilitates the nucleation of αphase nearby the ω/β interface and has a great effect on the refinement for α phase. As compared with the specimens directly aged, the specimens with ω-assisted refinement of α phase possess high tensile strength, but there is no yield stage detected on their stress-strain curve. Combined with the analyses of the fracture morphology, the specimens with ω-assisted refinement of α phase present a brittle fracture.This is mainly ascribed to its relatively lager width of grain boundaries and the absence of widmanst?ttenα precipitates.展开更多
针对以往HART仪表FSK发送电路功耗大且电路复杂的问题,提出了一种新型的应用在HART仪表上的FSK信号发送电路.该电路采用一种新型频率合成算法,即阶梯波产生算法,用来产生连续相位的温度码,然后将温度码送入DAC输出FSK阶梯波.结果表明,...针对以往HART仪表FSK发送电路功耗大且电路复杂的问题,提出了一种新型的应用在HART仪表上的FSK信号发送电路.该电路采用一种新型频率合成算法,即阶梯波产生算法,用来产生连续相位的温度码,然后将温度码送入DAC输出FSK阶梯波.结果表明,该电路能够产生连续相位的FSK信号阶梯波,功耗为0. 14 mA,失真度为3%,信噪比为92 d B,频率误差为1‰.该电路与同类产品相比,不仅能够产生连续相位的FSK阶梯波,而且电路简单,具有较高的性能.展开更多
基金This work was supported financially by the National Natural Science Foundation of China(Nos.51711530151 and 51804279)the Applied Basic Research Foundation of Shanxi Province(Nos.201901D211255 and 201801D221150)the Natural Science Research Project of NUC(XJJ201916).
文摘In this work, the phase transformation sequence during the continuous heating process(3℃/min) was investigated in a near β titanium alloy. The results show that the staring formation of ω phase is about267℃, and the ending precipitation temperature about 386℃ during the heating process. When the heating temperature is greater than 485℃, there are no ω phase detected within the β matrix. Combined with the microstructural characterization, it is found that ω phase facilitates the nucleation of αphase nearby the ω/β interface and has a great effect on the refinement for α phase. As compared with the specimens directly aged, the specimens with ω-assisted refinement of α phase possess high tensile strength, but there is no yield stage detected on their stress-strain curve. Combined with the analyses of the fracture morphology, the specimens with ω-assisted refinement of α phase present a brittle fracture.This is mainly ascribed to its relatively lager width of grain boundaries and the absence of widmanst?ttenα precipitates.
文摘针对以往HART仪表FSK发送电路功耗大且电路复杂的问题,提出了一种新型的应用在HART仪表上的FSK信号发送电路.该电路采用一种新型频率合成算法,即阶梯波产生算法,用来产生连续相位的温度码,然后将温度码送入DAC输出FSK阶梯波.结果表明,该电路能够产生连续相位的FSK信号阶梯波,功耗为0. 14 mA,失真度为3%,信噪比为92 d B,频率误差为1‰.该电路与同类产品相比,不仅能够产生连续相位的FSK阶梯波,而且电路简单,具有较高的性能.