[目的/意义]为更好地处理文本摘要任务中的未登录词(out of vocabulary, 00V ),同时避免摘要重复,提高文本摘要的质量,本文以解决00V问题和摘要自我重复问题为研究任务,进行抽象式中文文本摘要研究。[方法/过程]在序列到序列(sequence t...[目的/意义]为更好地处理文本摘要任务中的未登录词(out of vocabulary, 00V ),同时避免摘要重复,提高文本摘要的质量,本文以解决00V问题和摘要自我重复问题为研究任务,进行抽象式中文文本摘要研究。[方法/过程]在序列到序列(sequence to sequence, seq2seq)模型的基础上增加指向生成机制和覆盖处理机制,通过指向生成将未登录词拷贝到摘要中以解决未登录词问题,通过覆盖处理避免注意力机制(attentionmechanism)反复关注同一位置,以解决重复问题。将本文方法应用到LCSTS中文摘要数据集上进行实验,检验模型效果。[结果/结论]实验结果显示,该模型生成摘要的ROUGE ( recall -oriented understudy for gisting evaluation)分数高于传统的seq2seq模型以及抽取式文本摘要模型,表明指向生成和覆盖机制能够有效解决未登录词问题和摘要重复问题,从而显著提升文本摘要质量。展开更多
为提高新能源汽车领域术语抽取准确率,面向新能源汽车专利文本提出一种领域术语抽取模型。传统的领域术语抽取方法过度依赖人工定义特征和领域知识,无法自动挖掘隐含特征,其识别性能过度依赖所选特征的质量。从深度学习的角度出发,提出...为提高新能源汽车领域术语抽取准确率,面向新能源汽车专利文本提出一种领域术语抽取模型。传统的领域术语抽取方法过度依赖人工定义特征和领域知识,无法自动挖掘隐含特征,其识别性能过度依赖所选特征的质量。从深度学习的角度出发,提出了一种基于attention的双向长短时记忆网络(bidirectional long short-term memory,BLSTM)与条件随机场(conditional random fields,CRF)相结合的领域术语抽取模型(BLSTM_attention_CRF模型),并使用基于词典与规则相结合的方法对结果进行校正,准确率可达到86%以上,方法切实可行。展开更多
电力市场环境下,精准的短期负荷预测可以保障电网安全稳定运行,但电价的实时波动增加了负荷变化的复杂性,加大了预测难度。针对这一问题,采用最大信息系数法分析电价及历史负荷与当前时刻负荷的相关性,为预测模型输入特征的确定提供依...电力市场环境下,精准的短期负荷预测可以保障电网安全稳定运行,但电价的实时波动增加了负荷变化的复杂性,加大了预测难度。针对这一问题,采用最大信息系数法分析电价及历史负荷与当前时刻负荷的相关性,为预测模型输入特征的确定提供依据。在此基础上,提出了基于Attention-LSTM (attention long short-term memory,Attention-LSTM)网络的短期负荷预测模型。该模型充分利用负荷的时序特性,并采用Attention机制突出对负荷预测起到关键作用的输入特征。以澳大利亚某地区真实数据为算例,分别应用Attention-LSTM模型与其他模型进行仿真实验。结果表明,所提方法在预测精度和算法鲁棒性方面均优于其他模型。展开更多
文摘[目的/意义]为更好地处理文本摘要任务中的未登录词(out of vocabulary, 00V ),同时避免摘要重复,提高文本摘要的质量,本文以解决00V问题和摘要自我重复问题为研究任务,进行抽象式中文文本摘要研究。[方法/过程]在序列到序列(sequence to sequence, seq2seq)模型的基础上增加指向生成机制和覆盖处理机制,通过指向生成将未登录词拷贝到摘要中以解决未登录词问题,通过覆盖处理避免注意力机制(attentionmechanism)反复关注同一位置,以解决重复问题。将本文方法应用到LCSTS中文摘要数据集上进行实验,检验模型效果。[结果/结论]实验结果显示,该模型生成摘要的ROUGE ( recall -oriented understudy for gisting evaluation)分数高于传统的seq2seq模型以及抽取式文本摘要模型,表明指向生成和覆盖机制能够有效解决未登录词问题和摘要重复问题,从而显著提升文本摘要质量。
文摘为提高新能源汽车领域术语抽取准确率,面向新能源汽车专利文本提出一种领域术语抽取模型。传统的领域术语抽取方法过度依赖人工定义特征和领域知识,无法自动挖掘隐含特征,其识别性能过度依赖所选特征的质量。从深度学习的角度出发,提出了一种基于attention的双向长短时记忆网络(bidirectional long short-term memory,BLSTM)与条件随机场(conditional random fields,CRF)相结合的领域术语抽取模型(BLSTM_attention_CRF模型),并使用基于词典与规则相结合的方法对结果进行校正,准确率可达到86%以上,方法切实可行。
文摘电力市场环境下,精准的短期负荷预测可以保障电网安全稳定运行,但电价的实时波动增加了负荷变化的复杂性,加大了预测难度。针对这一问题,采用最大信息系数法分析电价及历史负荷与当前时刻负荷的相关性,为预测模型输入特征的确定提供依据。在此基础上,提出了基于Attention-LSTM (attention long short-term memory,Attention-LSTM)网络的短期负荷预测模型。该模型充分利用负荷的时序特性,并采用Attention机制突出对负荷预测起到关键作用的输入特征。以澳大利亚某地区真实数据为算例,分别应用Attention-LSTM模型与其他模型进行仿真实验。结果表明,所提方法在预测精度和算法鲁棒性方面均优于其他模型。