期刊文献+
共找到65篇文章
< 1 2 4 >
每页显示 20 50 100
口语理解中改进循环神经网络的应用 预览
1
作者 张晶晶 黄浩 +1 位作者 胡英 吾守尔·斯拉木 《计算机工程与应用》 CSCD 北大核心 2019年第18期155-160,共6页
口语理解性能的提升对于口语对话系统的研究具有重要作用。为了提高口语理解性能,应用循环神经网络(RNN)及其变体(LSTM,GRU)方法。在此基础上,提出一种改进的循环神经网络(Modified-RNN)方法,该方法通过添加存储历史状态信息,能够存储... 口语理解性能的提升对于口语对话系统的研究具有重要作用。为了提高口语理解性能,应用循环神经网络(RNN)及其变体(LSTM,GRU)方法。在此基础上,提出一种改进的循环神经网络(Modified-RNN)方法,该方法通过添加存储历史状态信息,能够存储更长时的信息,含有更少的参数,根据获取的更多信息提取特征信息增加获取信息的有效性,提高了口语理解的精准率和F1,缩短了实验时间。在航空旅行信息数据库(ATIS)上的实验结果验证了该算法的有效性和可靠性。 展开更多
关键词 循环神经网络(RNN) 长短时记忆网络(LSTM) 门限循环单元(GRU) 口语理解(SLU) 改进循环神经网络(M-RNN)
在线阅读 下载PDF
基于循环神经网络的对话系统记忆机制 预览
2
作者 易炜 何嘉 邹茂扬 《计算机工程与设计》 北大核心 2019年第11期3259-3264,共6页
针对基于循环神经网络(recurrent neural network,RNN)的对话系统缺乏上下文记忆能力的问题,提出一种带有额外记忆能力模块的深度学习模型。以序列到序列框架为基础,增加一个基于双向循环神经网络(Bi-directional RNN)和全连接神经网络... 针对基于循环神经网络(recurrent neural network,RNN)的对话系统缺乏上下文记忆能力的问题,提出一种带有额外记忆能力模块的深度学习模型。以序列到序列框架为基础,增加一个基于双向循环神经网络(Bi-directional RNN)和全连接神经网络的记忆选择模块。通过把当前对话和上下文输入到记忆选择模块中得到一个选择值,比较选择值与阈值决定是否把上下文语句也加入到当前对话的序列到序列结构的编码端,使模型在需要使用上下文信息的时候可以选择性地获取,使得模型具备记忆能力。实验结果表明,使用相同的语料库进行训练,加入了记忆能力模块的模型相比没有记忆能力的模型明显具备了结合上下文的记忆能力,可以生成更准确的回复。 展开更多
关键词 对话系统 记忆机制 序列到序列框架 循环神经网络 双向循环神经网络
在线阅读 下载PDF
基于BLSTM-RNN的船舶轨迹修复方法 预览
3
作者 王贵槐 钟诚 +1 位作者 初秀民 张代勇 《重庆交通大学学报:自然科学版》 CAS CSCD 北大核心 2019年第10期7-12,67共7页
针对内河干线船舶AIS轨迹数缺失问题,提出一种基于双向长短时记忆网络(BLSTM-RNN)模型的船舶轨迹数据修复方法。通过利用船舶轨迹上下文信息及其他回传特征作为模型输入,构建两层的双向循环神经网络(RNN)模型。在模型输入上,采用相关性... 针对内河干线船舶AIS轨迹数缺失问题,提出一种基于双向长短时记忆网络(BLSTM-RNN)模型的船舶轨迹数据修复方法。通过利用船舶轨迹上下文信息及其他回传特征作为模型输入,构建两层的双向循环神经网络(RNN)模型。在模型输入上,采用相关性分析及序列自相关系数,确定船舶轨迹点相关变量及轨迹序列自相关滞后值;在模型结构上,以ACC率为指标对模型超参数值进行合理设置,以长江干线航道武汉段及重庆段船舶轨迹数据为样本,对模型进行实证验证。实验结果表明:与线性及其他机器学习方法相比BLSTM-RNN方法在精度上有一定提升;在武汉段顺直河段实验中,将修复误差控制在15 m量级内,远低于其他非线性方法的50 m量级;在重庆复杂河段内,可将修复误差控制在10 m量级;模型解决了传统方法在长距离丢失点上精度缺失的问题,在20个连续点丢失的情况上,将修复误差降低至50m量级。 展开更多
关键词 船舶工程 双向长短时记忆网络(BLSTM) 循环神经网络(RNN) 船舶轨迹修复 船舶自动驾驶
在线阅读 免费下载
引入外部记忆的循环神经网络的口语理解 预览
4
作者 许莹莹 黄浩 《计算机工程与应用》 CSCD 北大核心 2019年第12期145-148,161共5页
循环神经网络(RNN)越来越在口语理解(Spoken Language Understanding,SLU)任务中显示出优势。然而,由于梯度消失和梯度爆炸问题,简单循环神经网络的存储容量受到限制。提出一种使用外部存储器来提高记忆能力的循环神经网络。并在ATIS数... 循环神经网络(RNN)越来越在口语理解(Spoken Language Understanding,SLU)任务中显示出优势。然而,由于梯度消失和梯度爆炸问题,简单循环神经网络的存储容量受到限制。提出一种使用外部存储器来提高记忆能力的循环神经网络。并在ATIS数据集上进行了实验,并与其他公开报道的模型进行比较。结果说明,在口语理解任务上,提出的引入外部记忆的循环神经网络在准确性、召回率和F1值都有较明显提高,优于传统循环神经网络及其变体结构。 展开更多
关键词 口语理解 循环神经网络 长短时记忆网络 神经图灵机
在线阅读 下载PDF
基于一维卷积混合神经网络的文本情感分类 预览
5
作者 陈郑淏 冯翱 何嘉 《计算机应用》 CSCD 北大核心 2019年第7期1936-1941,共6页
针对情感分类中传统二维卷积模型对特征语义信息的损耗以及时序特征表达能力匮乏的问题,提出了一种基于一维卷积神经网络(CNN)和循环神经网络(RNN)的混合模型。首先,使用一维卷积替换二维卷积以保留更丰富的局部语义特征;再由池化层降... 针对情感分类中传统二维卷积模型对特征语义信息的损耗以及时序特征表达能力匮乏的问题,提出了一种基于一维卷积神经网络(CNN)和循环神经网络(RNN)的混合模型。首先,使用一维卷积替换二维卷积以保留更丰富的局部语义特征;再由池化层降维后进入循环神经网络层,整合特征之间的时序关系;最后,经过softmax层实现情感分类。在多个标准英文数据集上的实验结果表明,所提模型在SST和MR数据集上的分类准确率与传统统计方法和端到端深度学习方法相比有1至3个百分点的提升,而对网络各组成部分的分析验证了一维卷积和循环神经网络的引入有助于提升分类准确率。 展开更多
关键词 情感分类 卷积神经网络 循环神经网络 词向量 深度学习
在线阅读 下载PDF
基于深度卷积神经网络的变压器故障诊断方法 预览
6
作者 王峰 毕建刚 +1 位作者 万梓聪 闫丹凤 《广东电力》 2019年第9期177-183,共7页
目前变压器故障诊断最常用的方法为三比值法,但在大量实际应用过程中,单凭经验或统计学原理很难进一步提升故障诊断准确率。为此,提出通过构建深度卷积神经网络(deeply convolutional neural network,DCNN)模型以提升设备故障诊断准确率... 目前变压器故障诊断最常用的方法为三比值法,但在大量实际应用过程中,单凭经验或统计学原理很难进一步提升故障诊断准确率。为此,提出通过构建深度卷积神经网络(deeply convolutional neural network,DCNN)模型以提升设备故障诊断准确率,DCNN模型能够识别设备监测数据的局部特征以及不同时刻监测数据间的相关信息;深度神经网络(deep neural network,DNN)模型可以无限逼近目标函数,能够以任务为导向,提高设备故障诊断的准确率。结合这2种网络模型,并使用残差网络(residual network,ResNet)结构、批量归一化来提高模型的收敛速度以及模型泛化能力。实验表明:DCNN模型在设备故障诊断时F-Score值、准确率和召回率均优于传统卷积神经网络(convolutional neural network,CNN)、循环神经网络(recurrent neural network,RNN)、XGBoost和三比值法。DCNN模型能够对设备监测数据特征进行自主学习,减少人工干预,降低误报率;此外,基于DCNN提取的设备指纹(表征设备特征信息)为后续设备故障诊断积累了数据基础。 展开更多
关键词 变压器 故障诊断 深度卷积神经网络 循环神经网络 XGBoost 设备指纹
在线阅读 下载PDF
基于脑电信号瞬时能量的情感识别方法 预览
7
作者 陈田 陈占刚 +2 位作者 袁晓辉 鞠思航 任福继 《计算机工程》 CAS CSCD 北大核心 2019年第4期196-204,共9页
希尔伯特-黄变换(HHT)是一种处理脑电信号(EEG)的有效方法,包括经验模态分解(EMD)和Hilbert变换2个部分。但EMD无法分解包含低能量的信号,且在低频区域会产生不良的本征模态函数。为消除EMD的弊端,提出一种小波包变换(WPT)和HHT相结合的... 希尔伯特-黄变换(HHT)是一种处理脑电信号(EEG)的有效方法,包括经验模态分解(EMD)和Hilbert变换2个部分。但EMD无法分解包含低能量的信号,且在低频区域会产生不良的本征模态函数。为消除EMD的弊端,提出一种小波包变换(WPT)和HHT相结合的EEG处理方法。采用WPT将EEG分解成一组窄带信号,通过HHT得到Hilbert能量谱,求出平均瞬时能量作为EEG特征并封装成特征矩阵。将特征矩阵通过卷积神经网络(CNN)、递归神经网络(RNN)、支持向量机(SVM)组成的混合情感识别模型进行训练与分类。实验结果表明,该方法对高兴、悲伤、平静、恐惧4种情感的平均识别率为86.22%,最优识别率为93.45%。 展开更多
关键词 脑电信号 情感识别 希尔伯特-黄变换 卷积神经网络 递归神经网络
在线阅读 下载PDF
基于时序图像深度学习的电熔镁炉异常工况诊断 预览
8
作者 吴高昌 刘强 +1 位作者 柴天佑 秦泗钊 《自动化学报》 EI CSCD 北大核心 2019年第8期1475-1485,共11页
超高温电熔镁炉(Fused magnesium furnace, FMF)生产炉况监测困难,易发生欠烧异常工况,不仅造成产品质量下降,也直接危害生产安全与人员安全.现有的人工巡检方式实时性差,容易发生漏报和误报,甚至导致铁制炉壳烧透、烧漏.针对该问题,本... 超高温电熔镁炉(Fused magnesium furnace, FMF)生产炉况监测困难,易发生欠烧异常工况,不仅造成产品质量下降,也直接危害生产安全与人员安全.现有的人工巡检方式实时性差,容易发生漏报和误报,甚至导致铁制炉壳烧透、烧漏.针对该问题,本文采用视频信号,利用电熔镁炉欠烧工况的时空特征,即在炉壳表面出现的局部不规则高亮区域的空间特征,以及该高亮区域随时间呈现出亮度增强、面积变大的时序特征,提出一种基于卷积循环神经网络(Convolutional recurrent neural network, CRNN)的电熔镁炉异常工况诊断新方法.该方法包括图像序列一致性变换和时序残差图像提取预处理、基于卷积神经网络(Convolutional neural network, CNN)的空间特征提取、基于循环神经网络(Recurrent neural network,RNN)的时序特征提取、基于加权中值滤波的工况自动标记.最后采用实际的电熔镁炉炉壳的视频信号,进行了所提方法与现有的两种深度学习网络模型的实验比较研究,结果说明了所提方法的优越性. 展开更多
关键词 电熔镁炉 时空特征提取 异常工况诊断 卷积神经网络 循环神经网络
在线阅读 下载PDF
高速铁路列车晚点时间实时预测的神经网络模型
9
作者 黄平 文超 +2 位作者 李忠灿 杨宇翔 彭其渊 《中国安全科学学报》 CAS CSCD 北大核心 2019年第S1期20-26,共7页
准确地预测高速列车晚点时间对提高高速铁路实时调度指挥水平及运输服务质量有重要意义。以武汉-广州高速铁路(HSR)列车运行实绩数据为基础,建立基于循环神经网络(RNN)的列车晚点预测模型。该模型中,按照列车实际运行顺序输入RNN以利用... 准确地预测高速列车晚点时间对提高高速铁路实时调度指挥水平及运输服务质量有重要意义。以武汉-广州高速铁路(HSR)列车运行实绩数据为基础,建立基于循环神经网络(RNN)的列车晚点预测模型。该模型中,按照列车实际运行顺序输入RNN以利用其反馈机制学习到相邻列车间相互作用关系。基于平均绝对误差(MAE)以及平均绝对百分误差(MAPE)评估模型的预测能力。结果表明:提出的深度学习模型预测精度明显高于人工神经网络、支持向量回归及马尔科夫等已有列车晚点时间预测模型。 展开更多
关键词 高速铁路(HSR) 列车运行实绩 晚点预测 循环神经网络(RNN) 列车相互作用
基于卷积双向长短期记忆网络的事件触发词抽取 预览 被引量:1
10
作者 陈斌 周勇 刘兵 《计算机工程》 CAS CSCD 北大核心 2019年第1期153-158,共6页
传统事件触发词抽取方法在特征提取过程中过分依赖自然语言处理工具,容易造成误差累积。为解决该问题,在卷积双向长短期记忆网络的基础上,提出一种事件触发词抽取方法。通过卷积操作提取单词上下文语境信息,同时利用长短期记忆网络保留... 传统事件触发词抽取方法在特征提取过程中过分依赖自然语言处理工具,容易造成误差累积。为解决该问题,在卷积双向长短期记忆网络的基础上,提出一种事件触发词抽取方法。通过卷积操作提取单词上下文语境信息,同时利用长短期记忆网络保留句子级别特征,从而提高事件触发词的抽取性能。在ACE2005英文语料上的实验结果表明,该方法在事件触发词识别与分类阶段的F值达到69.5%,具有较好的抽取性能。 展开更多
关键词 事件抽取 触发词 卷积神经网络 循环神经网络 自然语言处理 特征提取
在线阅读 下载PDF
基于混合模型的维吾尔文词性标注方法 预览
11
作者 帕丽旦·木合塔尔 吾守尔·斯拉木 买买提阿依甫 《计算机仿真》 北大核心 2019年第1期268-273,共6页
维吾尔语词性标注是词法分析中的重要任务之一,其标注结果的准确性直接影响到自然语言处理的后续工作。维吾尔语词性标注的难点是如何正确判断兼类词和未登录词的词性。提出了基于BiLSTM-CNN-CRF的混合模型进行维吾尔语词性标注。上述... 维吾尔语词性标注是词法分析中的重要任务之一,其标注结果的准确性直接影响到自然语言处理的后续工作。维吾尔语词性标注的难点是如何正确判断兼类词和未登录词的词性。提出了基于BiLSTM-CNN-CRF的混合模型进行维吾尔语词性标注。上述模型采用三层结构,先用CNN网络框架训练出维吾尔文单词的字符级形态特征向量,其次用skip-gram方法对大规模语料进行训练生成具有语义信息的低维度稠密实数词向量,然后将字符级特征向量和词向量拼接的组合向量作为BiLSTM-CRF深层神经网络的输入向量进行训练,构建适合维吾尔语词性标注的BiLSTM-CNN-CRF混合神经网络模型。实验结果显示,新的神经网络混合模型的词性标注准确率在实验室提供的数据集上达到了最好的标注结果,F1值达到了97.01%,对维吾尔语兼类词及未登录词标注有明显的提高。 展开更多
关键词 递归神经网络 卷积神经网络 条件随机场 维吾尔语 词性标注
在线阅读 下载PDF
基于深度学习LSTM的线损预测技术研究与应用 预览
12
作者 辛永 黄文思 +2 位作者 陆鑫 霍成军 陈婧 《电气自动化》 2019年第4期104-106,共3页
线损对电网的经济发展具有重要的作用,然而由于智能电表未完全普及,以及存在偷电漏电的行为,导致线损统计结果存在偏差,为线损治理工作带来很大的困难。提出来一种基于深度学习长短期记忆(long-short term memory,LSTM)神经网络的线损... 线损对电网的经济发展具有重要的作用,然而由于智能电表未完全普及,以及存在偷电漏电的行为,导致线损统计结果存在偏差,为线损治理工作带来很大的困难。提出来一种基于深度学习长短期记忆(long-short term memory,LSTM)神经网络的线损预测模型,并且设计了一组对比试验,对比的预测算法包括BP(back propagation)神经网络、循环神经网络(recurrent neural networks,RNN)。试验结果表明,LSTM算法的预测准确率高于BP神经网络和RNN,尤其是在数据量较大的情况下。 展开更多
关键词 深度学习 线损 预测 长短期记忆网络 循环神经网络
在线阅读 下载PDF
一种RNN-DBN的网络购物风险评估方法 预览
13
作者 曲媛媛 宫莉莹 贺维 《哈尔滨理工大学学报》 CAS 北大核心 2019年第4期105-109,共5页
针对网络购物过程中的交易风险问题,提出一种利用深度学习技术中的循环神经网络(recurrent neural network,RNN)模型和深度置信网络(deep belief network,DBN)模型来进行网络购物风险评估的方法。该方法首先确定交易风险评估的多个影响... 针对网络购物过程中的交易风险问题,提出一种利用深度学习技术中的循环神经网络(recurrent neural network,RNN)模型和深度置信网络(deep belief network,DBN)模型来进行网络购物风险评估的方法。该方法首先确定交易风险评估的多个影响因素,然后采用RNN模型对主观因素进行语义分析和情感分类,从而实现定性的主观评价到定量的客观评价的转化,最后采用DBN模型对所有客观影响因素进行交易风险综合评估。通过模拟实验验证,所提出的方法能够有效的解决交易风险评估问题,同时相比传统方法准确性更高,且评价结果更为科学。 展开更多
关键词 深度学习 循环神经网络 深度信念网络 风险评估 网络购物
在线阅读 下载PDF
基于摘要生成网络的快递地址规范化
14
作者 汪衡 杨燕 +1 位作者 张熠玲 翟冠霖 《山西大学学报:自然科学版》 CAS 北大核心 2019年第4期762-769,共8页
针对摘要生成网络在地址规范化系统中进行摘要生成问题,文章提出了一种基于混合注意力的摘要生成模型(Hybrid Attention Based Summary Generation Network,HASGN)。采用序列到序列模型,充分考虑摘要生成网络在短文本任务中的特殊作用,... 针对摘要生成网络在地址规范化系统中进行摘要生成问题,文章提出了一种基于混合注意力的摘要生成模型(Hybrid Attention Based Summary Generation Network,HASGN)。采用序列到序列模型,充分考虑摘要生成网络在短文本任务中的特殊作用,分别使用句子语义关系和地址关键元素作为特征,构建地址摘要生成模型。快递地址规范化的实验结果表明,与已有的摘要生成网络算法相比,HASGN方法能有效缓解短文本特征不足的问题,使Rouge值提升了2%~21%,提高了地址规范化效果。 展开更多
关键词 规范化 摘要生成 自然语言处理(NLP) 循环神经网络 混合注意力
基于循环神经网络的无线网络入侵检测分类模型构建与优化研究 预览
15
作者 陈红松 陈京九 《电子与信息学报》 EI CSCD 北大核心 2019年第6期1427-1433,共7页
为提高无线网络入侵检测模型的综合性能,该文将循环神经网络(RNN)算法用于构建无线网络入侵检测分类模型。针对无线网络入侵检测训练数据样本分布不均衡导致分类模型出现过拟合的问题,在对原始数据进行清洗、转换、特征选择等预处理基础... 为提高无线网络入侵检测模型的综合性能,该文将循环神经网络(RNN)算法用于构建无线网络入侵检测分类模型。针对无线网络入侵检测训练数据样本分布不均衡导致分类模型出现过拟合的问题,在对原始数据进行清洗、转换、特征选择等预处理基础上,提出基于窗口的实例选择算法精简训练数据集。对攻击分类模型的网络结构、激活函数和可复用性进行综合优化实验,得到最终优化模型,分类准确率达到98.6699%,综合优化后的运行时间为9.13 s。与其他机器学习算法结果比较,该优化方法在分类准确率和执行效率两个方面取得了很好的效果,综合性能优于传统的入侵检测分类模型。 展开更多
关键词 入侵检测 循环神经网络 实例选择 模型优化 实验验证
在线阅读 免费下载
基于深度学习的无人值守地面传感器目标检测与识别方法
16
作者 赵薇 许铜华 王楠 《战术导弹技术》 北大核心 2019年第5期30-36,共7页
目前,针对震动信号的目标检测与识别方法已得到广泛而深入的研究,但对距离较远、目标信号幅值与背景噪声幅值相近或相等的行人等目标的探测精度无法达到较高水平。针对该问题,从时域信号特征提取与学习的角度出发,提出一种基于深度学习... 目前,针对震动信号的目标检测与识别方法已得到广泛而深入的研究,但对距离较远、目标信号幅值与背景噪声幅值相近或相等的行人等目标的探测精度无法达到较高水平。针对该问题,从时域信号特征提取与学习的角度出发,提出一种基于深度学习的目标检测与识别方法,通过提取行人行走及跑步信号的峰值序列,将该序列输入循环神经网络进行训练,从而得到可准确检测与识别行人震动信号的网络模型。实验结果表明,该方法对远距离(≥30 m)行人目标的识别精度可达到93%以上。 展开更多
关键词 无人值守地面传感器 深度学习 循环神经网络 目标检测与识别
基于RNN-LSTM的磨矿系统故障诊断技术
17
作者 曲星宇 曾鹏 李俊鹏 《信息与控制》 CSCD 北大核心 2019年第2期179-186,共8页
目前磨矿系统故障诊断多为人为判断,效率低、准确率低、成本高且容易造成人员伤亡.传统方法对高维度和时间相关性较大的样本数据集分类能力较差,针对以上问题,提出一种基于RNN-LSTM(Recurrent Neural Network-Long Short-Term Memory)... 目前磨矿系统故障诊断多为人为判断,效率低、准确率低、成本高且容易造成人员伤亡.传统方法对高维度和时间相关性较大的样本数据集分类能力较差,针对以上问题,提出一种基于RNN-LSTM(Recurrent Neural Network-Long Short-Term Memory)的深度学习方法,实现磨矿系统故障的智能化诊断.该方法通过将数据集'分批处理'分别输入到LSTM单元网络中,提取数据集在时间维度上的相关性,并比较分析前后时刻的输入特征向量实现对故障分类.通过分别对RNN-LSTM深度学习网络与基于自编码分类方法进行实验对比验证,得出结论:在时间相关性较强的高维度数据集中基于RNN-LSTM深度方法辨识效果明显优于基于自编码方法的分类器,最终网络对于故障诊断的错误率低至3%. 展开更多
关键词 故障诊断 深度学习 循环神经网络 长短期记忆故障诊断
基于深度学习的隐性评价对象识别方法 预览
18
作者 王仁武 张文慧 《计算机工程》 CAS CSCD 北大核心 2019年第8期315-320,共6页
在线评论文本具有口语化的特点,其评价词缺少对应的评价对象,影响了细粒度情感分析的效果。为此,提出一种利用深度学习自动识别评价对象的方法。设计研究领域的文本序列标注规范,在对评论语料分词后,进行评价词与评价对象的命名实体标注... 在线评论文本具有口语化的特点,其评价词缺少对应的评价对象,影响了细粒度情感分析的效果。为此,提出一种利用深度学习自动识别评价对象的方法。设计研究领域的文本序列标注规范,在对评论语料分词后,进行评价词与评价对象的命名实体标注,得到单词序列、词性序列和标注序列。将单词序列、词性序列转为神经网络语言模型的词向量,并用循环神经网络进行训练,采用条件随机场(CRF)输出评价对象标签,得到缺失的评价对象。实验结果表明,与单一CRF模型相比,BiLSTM+CRF模型和BiGRU+CRF模型的识别效果较好,BiGRU+CRF模型的 F 1值最高可达0.84。 展开更多
关键词 隐性评价对象 隐性特征 深度学习 循环神经网络 条件随机场 命名实体识别
在线阅读 下载PDF
基于深度学习的文本自动摘要方案 预览 被引量:2
19
作者 张克君 李伟男 +2 位作者 钱榕 史泰猛 焦萌 《计算机应用》 CSCD 北大核心 2019年第2期311-315,共5页
针对自然语言处理(NLP)生成式自动摘要领域的语义理解不充分、摘要语句不通顺和摘要准确度不够高的问题,提出了一种新的生成式自动摘要解决方案,包括一种改进的词向量生成技术和一个生成式自动摘要模型。改进的词向量生成技术以Skip-Gra... 针对自然语言处理(NLP)生成式自动摘要领域的语义理解不充分、摘要语句不通顺和摘要准确度不够高的问题,提出了一种新的生成式自动摘要解决方案,包括一种改进的词向量生成技术和一个生成式自动摘要模型。改进的词向量生成技术以Skip-Gram方法生成的词向量为基础,结合摘要的特点,引入词性、词频和逆文本频率三个词特征,有效地提高了词语的理解;而提出的Bi-MulRnn+生成式自动摘要模型以序列映射(seq2seq)与自编码器结构为基础,引入注意力机制、门控循环单元(GRU)结构、双向循环神经网络(BiRnn)、多层循环神经网络(MultiRnn)和集束搜索,提高了生成式摘要准确性与语句流畅度。基于大规模中文短文本摘要(LCSTS)数据集的实验结果表明,该方案能够有效地解决短文本生成式摘要问题,并在Rouge标准评价体系中表现良好,提高了摘要准确性与语句流畅度。 展开更多
关键词 自然语言处理 生成式文本自动摘要 序列映射 自编码器 词向量 循环神经网络
在线阅读 下载PDF
一种类RNN的改进ISTA稀疏脉冲反褶积 预览
20
作者 潘树林 闫柯 +2 位作者 杨海飞 蒋从元 秦子雨 《石油物探》 EI CSCD 北大核心 2019年第4期533-540,共8页
稀疏脉冲反褶积方法对提高地震资料分辨率有着重要作用,迭代阈值收缩算法(ISTA)是其核心算法,首先利用地震数据提取子波,再利用ISTA求解反射系数.当地震子波提取不准确时,反褶积效果不理想.为此,在ISTA基础上,结合循环神经网络(RNN)中... 稀疏脉冲反褶积方法对提高地震资料分辨率有着重要作用,迭代阈值收缩算法(ISTA)是其核心算法,首先利用地震数据提取子波,再利用ISTA求解反射系数.当地震子波提取不准确时,反褶积效果不理想.为此,在ISTA基础上,结合循环神经网络(RNN)中反向传播(BPTT)的思想,研究形成了一种类RNN的改进ISTA稀疏脉冲反褶积方法.该算法首先使用常规手段从实际地震数据中提取地震子波,构建反褶积的子波字典;然后将构建的地震子波字典作为已知的初始条件,结合ISTA求取的反射系数;再根据BPTT算法思想,将求取的反射系数与子波褶积并与实际数据进行比较,反向修改地震子波;最终,经过多次迭代修改获得合理的地震子波字典,并利用该地震子波字典求解实际地震数据的反射系数序列.为验证算法的有效性,采用不同信噪比的理论地震记录,给定存在较大误差的初始子波,进行了反褶积计算.采用传统的ISTA和类RNN的改进ISTA进行对比处理,结果表明,改进ISTA具有较好的抗噪能力和子波自适应能力,可使实测地震资料的有效频带拓展约1.5倍,能够较好地适应实际地震资料的反褶积处理. 展开更多
关键词 稀疏脉冲反褶积 分辨率 ISTA 地震子波 信噪比 循环神经网络 反向传播
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部 意见反馈