期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Armen Tsaturyan Svetlana Gudyno 冠军背后
1
作者 刘璐 《尚舞》 2019年第5期14-19,共6页
每个选手都在'夺冠'的路上奋力奔跑。这条路太崎岖,没人知道前行的攻略。2018年,Armen Tsaturyan&Svetlana Gudyno到达了他们当下职业生涯的顶峰,拿下了他们人生的第一个大满贯,历时8年。
关键词 总决赛 大奖赛 拉丁舞 牛仔舞 Armen Tsaturyan Svetlana Gudyno
On Weakly Semicommutative Rings 预览
2
作者 CHEN WEI-XING CUI SHU-YING 《数学研究通讯:英文版》 CSCD 2011年第2期 179-192,共14页
<正>A ring R is said to be weakly semicommutative if for any a,b∈R, ab=0 implies aRb(?)Nil(R),where Nil(R) is the set of all nilpotent elements in R. In this note,we clarify the relationship between weakly semi... <正>A ring R is said to be weakly semicommutative if for any a,b∈R, ab=0 implies aRb(?)Nil(R),where Nil(R) is the set of all nilpotent elements in R. In this note,we clarify the relationship between weakly semicommutative rings and NI-rings by proving that the notion of a weakly semicommutative ring is a proper generalization of NI-rings.We say that a ring R is weakly 2-primal if the set of nilpotent elements in R coincides with its Levitzki radical,and prove that if R is a weakly 2-primal ring which satisfiesα-condition for an endomorphismαof R(that is,ab=0(?)aα(b)=0 where a,b∈R) then the skew polynomial ring R[x;α] is a weakly 2-primal ring,and that if R is a ring and I is an ideal of R such that I and R/I are both weakly semicommutative then R is weakly semicommutative. Those extend the main results of Liang et al.2007(Taiwanese J.Math.,11(5)(2007), 1359-1368) considerably.Moreover,several new results about weakly semicommutative rings and NI-rings are included. 展开更多
关键词 戒指 斜多项式环 零元素 ARB NI 自同态 集合 证明
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部 意见反馈