In insects,facultative diapause is a state of developmental arrest mainly induced by photoperiod or temperature that allows insects to survive adverse environmental conditions.Understanding how insect initiates facult...In insects,facultative diapause is a state of developmental arrest mainly induced by photoperiod or temperature that allows insects to survive adverse environmental conditions.Understanding how insect initiates facultative diapause and prepares diapause can provide us new insights to study developmental and evolutionary biology.It has been shown that the circadian clock genes can participate in photoperiodic measurement and regulate reproductive diapause initiation through JH signaling in short-day-induced winter diapause.However,how circadian clock genes translate photoperiodic information into downstream JH signaling for diapause destiny and then affect diapause preparation remains largely unknown.In the present study,we investigate this in the cabbage beetle Colaphellus bowringi which undergoes reproductive diapause under long-day condition.We respectively knocked down two circadian clock negative regulators,period(per)and timeless(tim),in the 3-day-old larvae(most sensitive to photoperiod),and dsgfp treatment was served as a control.Under the diapause-inducing photoperiod(16L:8D),knocking down per and tim significantly decreased the rate of burrowing behavior.And mtany female beetles of the per and tim RNAi showed developed ovary,decreased lipid accumulation and downregulated expression of stress resistance genes.The JHinduced genes,Kr-h1,JHE1,Vg1,and Vg2, significantly increased in the females with suppression of per and tim.It implied that suppression of per and tim during diapause initiation phase(DIP)could activate the JH signaling in the female adults.Before the beetles enter into diapause preparation phase(DPP),we used RNA sequencing to analyize gene expression profiles after per and tim RNAi.It showed that many differentially expressed genes were enriched in environmental information processing,such as mTOR and TGF-beta signaling pathway.To ask whether per and tim also regulate diapause preparation,we knocked down these two genes in the female adults during DPP.It showed that the diapause destiny was n展开更多
基金the National Natural Science Foundation of China(31701842).
文摘In insects,facultative diapause is a state of developmental arrest mainly induced by photoperiod or temperature that allows insects to survive adverse environmental conditions.Understanding how insect initiates facultative diapause and prepares diapause can provide us new insights to study developmental and evolutionary biology.It has been shown that the circadian clock genes can participate in photoperiodic measurement and regulate reproductive diapause initiation through JH signaling in short-day-induced winter diapause.However,how circadian clock genes translate photoperiodic information into downstream JH signaling for diapause destiny and then affect diapause preparation remains largely unknown.In the present study,we investigate this in the cabbage beetle Colaphellus bowringi which undergoes reproductive diapause under long-day condition.We respectively knocked down two circadian clock negative regulators,period(per)and timeless(tim),in the 3-day-old larvae(most sensitive to photoperiod),and dsgfp treatment was served as a control.Under the diapause-inducing photoperiod(16L:8D),knocking down per and tim significantly decreased the rate of burrowing behavior.And mtany female beetles of the per and tim RNAi showed developed ovary,decreased lipid accumulation and downregulated expression of stress resistance genes.The JHinduced genes,Kr-h1,JHE1,Vg1,and Vg2, significantly increased in the females with suppression of per and tim.It implied that suppression of per and tim during diapause initiation phase(DIP)could activate the JH signaling in the female adults.Before the beetles enter into diapause preparation phase(DPP),we used RNA sequencing to analyize gene expression profiles after per and tim RNAi.It showed that many differentially expressed genes were enriched in environmental information processing,such as mTOR and TGF-beta signaling pathway.To ask whether per and tim also regulate diapause preparation,we knocked down these two genes in the female adults during DPP.It showed that the diapause destiny was n