To study the formation of layer-shaped pores in TiC-Fe cermet, two Ti-C-Fe powder compacts containing Ti powders with two size ranges (<44?μm and 135~154?μm) respectively were ignited in a special ignition mode. T...To study the formation of layer-shaped pores in TiC-Fe cermet, two Ti-C-Fe powder compacts containing Ti powders with two size ranges (<44?μm and 135~154?μm) respectively were ignited in a special ignition mode. The combustion temperatures of the reactions were measured, the phase constituents of the combustion-synthesized products were inspected by X-ray diffractometry (XRD), and the structures of the products were observed with scanning electron microscope (SEM). In the case of the finer Ti powder used, TiC-Fe cermet and pore rank in an alternately laminar shape, and the shape of the pore is the same as that of the combustion wavefront, implying that the layer-shaped pore results from a gather of the retained gas into the combustion wavefront. While in the case of the coarser Ti powder used, the lower combustion temperature causes the gather of the retained gas to be difficult, the pore being present in an arbitrary shape and distributing randomly.展开更多
In order to well design tribosystems of dental CAD-CAM restorations, an understanding of the tribological mechanisms of dental machinable porcelain are essential. The friction and wear behavior of new generation indus...In order to well design tribosystems of dental CAD-CAM restorations, an understanding of the tribological mechanisms of dental machinable porcelain are essential. The friction and wear behavior of new generation industrially prefabricated Cerec Vitablocs Mark Ⅱ against uniform Si3N4 ball has been performed using a small amplitude reciprocating apparatus under simulating oral conditions. The loads of 10-40 N, reciprocating amplitudes of 100-500 μm, frequencies of 1-4 Hz and two lubrications (no / artificial saliva lubrication) were selected. Tests lasting up to 10 000 cycles were conducted. The results show that Cerec Vitablocs Mark Ⅱ record a friction coefficient of 0.55-0.84. Artificial saliva plays a lubricant effect during wear process. Among three parameters of the test on friction coefficient and wear depth of dental machinable porcelains, the load effect is prominent. Abrasive wear is the main wear mechanism, but brittle cracks and delamination are more popular especially under unlubricated friction.展开更多
文摘To study the formation of layer-shaped pores in TiC-Fe cermet, two Ti-C-Fe powder compacts containing Ti powders with two size ranges (<44?μm and 135~154?μm) respectively were ignited in a special ignition mode. The combustion temperatures of the reactions were measured, the phase constituents of the combustion-synthesized products were inspected by X-ray diffractometry (XRD), and the structures of the products were observed with scanning electron microscope (SEM). In the case of the finer Ti powder used, TiC-Fe cermet and pore rank in an alternately laminar shape, and the shape of the pore is the same as that of the combustion wavefront, implying that the layer-shaped pore results from a gather of the retained gas into the combustion wavefront. While in the case of the coarser Ti powder used, the lower combustion temperature causes the gather of the retained gas to be difficult, the pore being present in an arbitrary shape and distributing randomly.
文摘In order to well design tribosystems of dental CAD-CAM restorations, an understanding of the tribological mechanisms of dental machinable porcelain are essential. The friction and wear behavior of new generation industrially prefabricated Cerec Vitablocs Mark Ⅱ against uniform Si3N4 ball has been performed using a small amplitude reciprocating apparatus under simulating oral conditions. The loads of 10-40 N, reciprocating amplitudes of 100-500 μm, frequencies of 1-4 Hz and two lubrications (no / artificial saliva lubrication) were selected. Tests lasting up to 10 000 cycles were conducted. The results show that Cerec Vitablocs Mark Ⅱ record a friction coefficient of 0.55-0.84. Artificial saliva plays a lubricant effect during wear process. Among three parameters of the test on friction coefficient and wear depth of dental machinable porcelains, the load effect is prominent. Abrasive wear is the main wear mechanism, but brittle cracks and delamination are more popular especially under unlubricated friction.