期刊文献+

基于改进的局部方向模式人脸表情识别算法

Facial expression recognition algorithm based on improved local direction pattern
收藏 分享 导出
摘要 针对LDP利用Kirsch算子计算8方向的边缘响应值并排序,特征提取速度慢的问题,提出了一种改进的分解局部方向模式DLDP(divided local directional pattern)特征提取方法。将Kirsch算子的8个方向掩模分成2个子方向掩模再分别计算边缘响应值,获得2个编码(DLDP1和DLDP2),级联两个编码的直方图得到表情特征DLDP。然后利用主成分分析法(PCA,principal component analysis)降维处理。最后用支持向量机进行表情识别,在JAFFE数据库上的实验表明,本文方法与近几年效果较好的特征提取算法相比,不仅缩短了特征提取的运算时间,而且提高了识别率。 The local directional pattern(LDP)descriptor is a method for texture feature extraction.It calculates and sorts edge response values of eight different directions,thus the speed is slower than other local texture feature extraction algorithm.This paper presents a new feature descriptor called divided local directional pattern(DLDP)for feature extraction.In this method,Kirsch masks in eight different orientations were divided into two sub-directional masks.The edge response values were calculated respectively to obtain DLDP1 and DLDP2.DLDP1 and DLDP2 were concatenated into a single DLDP descriptor.Then principal component analysis(PCA)was used for dimensionality reduction processing.Finally,the support vector machine(SVM)was applied to classify and recognize facial expression.The experimental results show that compared with the better feature extraction algorithms in recent years,the improved local direction pattern can not only reduce the computation time,but also improve the rate of facial expression recognition.
作者 罗元 余朝靖 张毅 刘浪 LUO Yuan;YU Chaojing;ZHANG Yi;LIU Lang(Key Laboratory of Optoelectronic Information Sensing and Transmission Technology,Chongqing University of Posts and Telecommunications,Chongqing 400065,P.R.China;Engineering Research Center for Information Accessibility and Service Robots,Chongqing University of Posts and Telecommunications,Chongqing 400065,P.R.China)
出处 《重庆大学学报:自然科学版》 CAS CSCD 北大核心 2019年第3期85-91,共7页 Journal of Chongqing University(Natural Science Edition)
关键词 表情识别 KIRSCH算子 分解局部方向模式 PCA facial expression recognition Kirsch masks divided local directional pattern principal component analysis
作者简介 罗元(1972—),女,博士,教授,主要从事机器视觉,光电信号处理研究,(E-mail)luoyuan@cqupt.edu.cn。
  • 相关文献

参考文献5

二级参考文献48

  • 1谭华春,章毓晋.基于人脸相似度加权距离的非特定人表情识别[J].电子与信息学报,2007,29(2):455-459. 被引量:5
  • 2Lowe D G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2): 91-110. 被引量:1
  • 3Louren?o M, Barreto J P A, Vasconcelos F. sRD-SIFT: keypoint detection and matching in images with radial distortion. IEEE Transactions on Robotics, 2012, 28(3): 752-760. 被引量:1
  • 4Rublee E, Rabaud V, Konolige K G, Bradski J R. ORB: an efficient alternative to SIFT or SURF. In: Proceedings of the 2011 IEEE International Conference on Computer Vision. Barcelona, Spain: IEEE, 2011. 2564-2571. 被引量:1
  • 5Tian Q, Zhang S L, Zhou W G, Ji R R, Ni B B, Sebe N. Building descriptive and discriminative visual codebook for large-scale image applications. Multimedia Tools and Applications, 2011, 51(2): 441-477. 被引量:1
  • 6Mikolajczyk K I, Schmid C. A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1615-1630. 被引量:1
  • 7Bay H, Tuytelaars T, van Gool L. SURF: speeded up robust features. In: Proceedings of the 9th European Conference on Computer Vision. Graz, Austria: Springer, 2006. 404-417. 被引量:1
  • 8Juan L, Gwun O. A comparison of SIFT, PCA-SIFT and SURF. International Journal of Image Processing, 2009, 3(4): 143-152. 被引量:1
  • 9Huang C R, Chen C R, Chung P C. Contrast context histogram: an efficient discriminating local descriptor for object recognition and image matching. Pattern Recognition, 2008, 41(10): 3071-3077. 被引量:1
  • 10Ke Y, Sukthankar R. PCA-SIFT: a more distinctive representation for local image descriptors. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE, 2004. 506-513. 被引量:1

共引文献37

投稿分析

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部 意见反馈