期刊文献+

不同加热功率条件下钠钾合金热管启动和传热性能

Start-up and heat transfer performance of a sodium-potassium alloy heat pipe under different conditions of heating power
收藏 分享 导出
摘要 以钠钾合金(NaK-55)为工质进行实验,分别在800、1000、1200、1400、1600W的加热功率条件下对钠钾合金热管的启动和传热性能进行研究。实验结果表明:在800~1600W加热功率范围内,在冷却水冷却条件下,该钠钾合金热管可以完全启动并进入稳定工作状态。随着加热功率的提高,热管外壁面温度整体略有增加,冷凝段启动时间缩短,钠钾合金热管的当量传热系数、蒸发区表面传热系数、冷凝区表面传热系数随加热功率的提高成线性增加。 A sodium-potassium ally (45-wt.%-Na and 55-wt.%-K) heat pipe was experimentally tested to investigate the effect of heating powers (800, 1000, 1200, 1400, and 1600W) on start-up and heat transfer performances. The results showed that under the tested operation conditions, the sodium-potassium ally heat pipe presented an optimal start-up performance with the heating power. Within the range of 800-1600W of heating power, the heat pipe could achieve a dynamic equilibrium state of heat transfer as the heat was carried away by cooling water in time, and the heat transfer coefficient of the sodium-potassium ally heat pipe, convective heat transfer coefficients of evaporator and condenser sections almost linearly increased with the heating power.
作者 郭航 贾先剑 郭青 闫小克 叶芳 马重芳 GUO Hang;JIA Xianjian;GUO Qing;YAN Xiaoke;YE Fang;MA Chongfang(Key Laboratory of Enhanced Heat Transfer and Energy Conservation,Ministry of Education of China,and Beijing Key Laboratory of Heat Transfer and Energy Conversion,College of Environmental and Energy Engineering,Beijing University of Technology,Beijing 100124 ,China;Division of Thermophysics and Process Measurements,National Institute of Metrology,Beijing 100013 ,China)
出处 《航空动力学报》 EI CAS CSCD 北大核心 2019年第1期1-7,共7页 Journal of Aerospace Power
基金 国家重点研发计划课题(2017YFF0205901).
关键词 热管 钠钾合金 传热 加热功率 相变 heat pipe sodium-potassium alloy heat transfer heating power phase change
作者简介 郭航(1970-),男,教授、博士生导师,博士,主要从事传热与能源利用研究。
  • 相关文献

参考文献11

二级参考文献54

  • 1赵蔚琳 ,刘宗明 ,李树人 .高温热管的研究与发展[J].石油化工设备,2005,34(4):40-44. 被引量:8
  • 2李亭塞 华诚生.热管设计与应用[M].北京:化学工业出版社,1987.. 被引量:1
  • 3Hashemi A, Dyson E,Wong H. Cooling of onboard highpower electronics using augmented heat rejection from aircraft skin[C]//Proceedings of the Symposium on Thermal Science and Engineering in Honor of Chancellor Chang-Lin Tien. Berkeley, California : [s. n. ],1995 : 465-474. 被引量:1
  • 4Dyson E, Hashemi A, Wong H. High-power electronics heat rejection from aircraft skin[J]. Journal of Enhanced Heat Transfer, 1996,3 (3) : 165-176. 被引量:1
  • 5Hashemi A, Dyson E. Design of an aircraft skin cooling system for thermal management of onboard high power electronic equipment[C]//ASME Proceedings of the 31st National Heat Transfer Conference. New York, NY, USA: American Society of Mechanical Engineers, 1996: 233-243. 被引量:1
  • 6Hashemi A, Dyson E. Performance characterization of highpower electronic equipment onboard an aireraft[R]. AIAA 1997-0596,1997. 被引量:1
  • 7Hashemi A, Fast M, Schneider J, et al. Performance prediction and control system design of an aircraft skin cooling technique[R]. AIAA 1998-0837,1998. 被引量:1
  • 8Gernert N J, Baldassarre G J, Gottschlich J. Loop heat pipes for avionics thermal control[R]. SAE 96 1318,1996. 被引量:1
  • 9Thayer J, Hall G. Flexible air cooled loop heat pipe for high density avionics cooling[R]. AIAA 2006 3413,2006. 被引量:1
  • 10Beam J. Heat sink options for a more electric aircraft thermal management system[R]. SAE 1997-1244,1997. 被引量:1

共引文献40

投稿分析

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部 意见反馈
新型冠状病毒肺炎防控与诊疗专栏