期刊文献+

变系数Zakharov-Kuznetsov方程的三层线性隐式差分格式 预览

A three-level difference scheme for Zakharov-Kuznetsov equation
在线阅读 免费下载
分享 导出
摘要 利用有限差分法逼近变系数广义ZK(Zakharov-Kuznetsov)方程的初边值问题,建构一个三层线性化隐式差分格式.利用离散能量估计方法,讨论差分格式解的唯一性以及x方向的一阶差商在L∞模意义下的收敛性、稳定性和收敛阶数,并通过数值算例验证理论分析的结果. In this paper,by using finite difference method,an implicit difference scheme is constructed to approximate the initial-boundary value problem of ZK equation.The proposed scheme is a three-level linearization scheme.Using the method of discrete energy estimates,existence uniqueness of difference scheme is proved.With the method of the discrete energy estimate,it is shown that the difference scheme is convergent in maximum norm.The convergence order is second-order in both space and time.Some numerical experiments are conducted to illustrate the theoretical results of the proposed difference scheme.
作者 盛秀兰 冯美娇 吴宏伟 SHENG Xiulan1'2 ~ , FENG Meijiao, WU Hongwei1 (1. Dept of Math, Southeast Univ, Nanjing 210096, China; 2. Jiangsu Open Univ, Nanjing 210036, China)
出处 《扬州大学学报:自然科学版》 CAS 北大核心 2015年第2期31-34,39共5页 Journal of Yangzhou University(Natural Science Edition)
基金 国家自然科学基金资助项目(11271068) 江苏开放大学“十二五”规划课题(13SEW-C-076)
关键词 ZAKHAROV-KUZNETSOV方程 隐式差分格式 收敛性 稳定性 Zakharov-Kuznetsov equation implicit difference scheme convergence stability
作者简介 联系人,E—mail:113525336@qq.com.
  • 相关文献

参考文献12

  • 1ABDOU M A, ABD EIGAWAD S S. New periodic wave solutions for nonlinear evolution equations with variable coefficients via maping method [J]. Numer Meth- ods Partial Differ Eqs, 2010, 26(6) : 1608-1623. 被引量:1
  • 2GANJAVI B, MOHAMMADI H, GANJI D D, et al. Homotopy perturbation method and variational iteration method for solving Zakharov-Kuznetsov equation [J]. Am J Appl Sci, 2008, 5(7): 811-817. 被引量:1
  • 3YAN Zhilian, LIU Xiqiang. Symmetry and similarity solutions of variable coefficients generalized Zakharov- Kuznetsov equation [J]. Appl Math Comput, 2006, 180(1): 288-294. 被引量:1
  • 4WANG Chuntian. The existence of strong solutions to the 3D Zakharov-Kuznetsov equation in a bounded domain [J]. DiscreteContinDynSyst, 2014, 34(11): 4897-4910. 被引量:1
  • 5BUSTAMANTE E, ISAZA P, MEJIA J. On uniqueness properties of solutions of the Zakharov-Kuznetsov equation [J]. J Funet Anal, 2013, 264(11) : 2529-2549. 被引量:1
  • 6RIBAUD F, VENTO S. Well-posedness results for the three-dimensional Zakharov-Kuznetsov equation [J]. SIAM J Math Anal, 2012, 44(4) : 2289-2304. 被引量:1
  • 7MA Hongcai, YU Yaodong, GE Dongjie. The auxiliary equation method for solving the Zakharov-Kuznetsov (ZK) equation [J]. Comput Appl, 2009, 58(11/12): 2523-2527. 被引量:1
  • 8DARVISHI M T, KHANI F, KHEYBARI S. A numerical solution of the Kdv-Burgers' equation by spectral collocation method and Darvishi's preconditionings [J]. Int J Contemp Math Sci, 2007, 2(22): 1085-1095. 被引量:1
  • 9HAQ S, ISLAM S, UDDIN M. A mesh-free method for the numerical solution of the Kdv-Burgers equation [J]. Appl Math Model, 2009, 33(8): 3442-3449. 被引量:1
  • 10NISHIYAMA H, NOI T, OHARU S. Conservative finite difference schemes for the generalized Zakharow Kuznetsov equations [J]. J Comput Appl Math, 2012, 236(12): 2998-3006. 被引量:1

二级参考文献22

  • 1艾尧,吴宏伟.带非线性强迫项的Burgers方程二阶收敛的差分格式[J].应用数学,2010(1):116-124. 被引量:3
  • 2孙志忠.解拟线性抛物方程的一类二阶差分格式[J].计算数学,1994,16(4):347-361. 被引量:5
  • 3孙志忠.偏微分方程数值解[M].北京:科学出版社.2004. 被引量:11
  • 4Hsu Sze-Bi, Hwang Tzy-Wei, Kuang Yang. A ratio dependent food chain model and its applications to biological control[J]. Math Biosci, 2003, 181:55-83 被引量:1
  • 5Morgan Jeff. Boundedness and decay result for reaction-diffusion systems[J]. SIAM J Math Anal, 1990, 21(5): 1171-1189 被引量:1
  • 6Diaz J I, Ramos A M. Numerical experiments regarding the distributed control of semilinear parabolic problems[J]. Comput Math Appl, 2004, (48): 1575-1586 被引量:1
  • 7Yuan Guang-wei, Shen Long-jun, Zhou Yu-lin. Unconditional stablility of parallel allernating difference schemes for semilinear parabolic systen]s[J]. Appl Math Comput, 2001, 117:267-283 被引量:1
  • 8Voss D A, Khaliq A Q M. A linearly implicit predictor-correct method for reaction-diffusion equations[J]. Computers Math Applic, 1999, 38:207-216 被引量:1
  • 9ZHANG Chaoying, TAN Huili, LIU Muren, et al. A lattice Boltzmann model and simulation of KdV-Burgers equation[-J]. CommunTheor Phys, 2004, 42(8): 281 284. 被引量:1
  • 10CHENG Rongjun, CHENG Yumin. A meshless method for the compound KdV-Burgers equation [J]. Chin Phys B, 2011, 20(7): 070206: 1-6. 被引量:1

共引文献9

投稿分析

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部 意见反馈