期刊文献+

面向对象的森林植被图像识别分类方法 被引量:28

Study on Forest Classification Based on Object Oriented Techniques
收藏 分享 导出
摘要 森林植被信息提取是遥感影像分类中的难点,仅利用光谱信息难以提取森林植被的类型,本文以门头沟区森林植被占主要土地覆被类型为研究对象,选择HJ-1影像面向对象提取不同地物信息。由于研究区地形复杂,采用多尺度分割方法,对不同地物设置不同分割参数,实现不同地物分层提取。根据光谱、纹理及几何等特征选择合适的特征参数,构建隶属度函数,逐级提取研究区的土地覆被类型,并与传统的最大似然法进行对比。结果表明:面向对象的分类方法在门头沟区森林植被二级信息提取的精度为83%,与传统方法相比有了较大的提高。 Since vegetation is an important indicator of global climate change,then the way to extract vegetation changing data should be put as the top priority.Especially,the extraction of sub-category information of forest vegetation has always been a difficult point in remote sensing image classification.And it is more difficult to extract sub-category information of the forest vegetation type only by taking advantage of the spectral information.As a widely-used method,object-oriented classification has been rapidly developed from the beginning of this century.Object-oriented classification method is mainly used in high-resolution remote sensing imagines,and it is applicable to medium resolution remote sensing images.This paper took Mentougou District,Beijing,which is mainly covered with forest vegetation,as the object of this research,and took HJ-1 image as the main data source then different buildings can be extracted by using the object-oriented classification method.By the reason of complicated terrain in this district,a hierarchical segmentation method was proposed in this research.Then different segmentation parameters could be set according to different buildings.Based on the spectral characteristic of the vegetation,appropriate characteristic parameters could be chosen and subordination function is constructed.After then,land cover types in this district could be extracted step by step and at the same time could be compared with those by the traditional maximum likelihood method.The result indicates that extraction accuracy of the forest vegetation sub-category data in this Mentougou District is 83% by using the object-oriented classification method.Compared with the traditional method,the extraction accuracy has been boosted a lot.
作者 郭亚鸽 于信芳 江东 王世宽 姜小三 GUO Yage,YU Xinfang,JIANG Dong,WANG Shikuan and JIANG Xiaosan(1.The College of Resources and Environment Science,Nanjing Agriculture University,Nanjing 210095,China; 2.Institute of Geographic Science and Natural Resources Research,CAS,Beijing 100101,China)
出处 《地球信息科学学报》 CSCD 北大核心 2012年第4期514-522,共9页 Geo-information Science
基金 中国科学院战略性先导科技专项(XDA05050102) 全国生态环境10年(2000-2010年)变化遥感调查与评估专题(STSN-01-01)
关键词 ECOGNITION 面向对象分类 多尺度分割 最大似然法 eCognition object-oriented classification multi-scale segmentation maximum likelihood
作者简介 郭亚鸽(1984-),女,硕士研究生,研究方向为资源环境信息系统。E-mail:2009103051@njau.edu.cn 通讯作者:姜小三(1967-),博士,副教授,研究方向为资源环境信息系统。E-mail:gis@njau.edu.cn
  • 相关文献

参考文献30

二级参考文献212

共引文献500

同被引文献360

引证文献28

二级引证文献94

投稿分析

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部 意见反馈